164
Views
65
CrossRef citations to date
0
Altmetric
Original Article

The cAMP Signaling Pathway as a Therapeutic Target in Lymphoid Malignancies

, &
Pages 39-51 | Received 10 Aug 1999, Published online: 01 Jul 2009

References

  • Dawson D.L., Cutler B.S., Meissner M.H., Strandness D.E.J. Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation 1998; 98: 678
  • Underwood D., Bochnowicz S., Osborn R., Kotzer C., Luttmann M., Hay D., Gorycki P., Christensen S., Torphy T. Antiasthmatic activity of the second-generation phosphodiesterase 4 (PDE4) inhibitor SB 207499 (Ariflo) in the guinea pig. Journal of Pharmacology & Experimental Therapeutics. 1998; 287: 988
  • Goldstein I., Lue T., Padmathan H.-N., Rosen R., Steers W., Wicker P. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N Engl J Med 1998; 338: 1397
  • Daniel V., Litwack G., Tompkins G.M. Induction of cytolysis of cultured lymphoma cells by adenosine 3′:5′-cyclic monophosphate and isolation of resistant variants. Proc. Natl. Acad. Sci. USA 1973; 70: 76
  • Coffino P., Bourne H.R., Tomkins G.M. Mechanism of lymphoma cell death induced by cyclic AMP. Am. J. Pathol. 1975; 81: 199
  • McConkey D.J., Orrenius S., Jondal M. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J. Immunol. 1990; 145: 1227
  • Knox K.A., Johnson G.D., Gordon J. Distribution of cAMP in secondary follicles and its expression in B cell apoptosis and CD40-mediated survival. Int. Immunol. 1993; 5: 1085
  • Lomo J., Blomhoff H.K., Beiske K., Stokke T., Smeland E.B. TGF-B1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J. Immunol. 1995; 154: 1634
  • Smit M.J., Iyengar R. Mammalian adenylyl cyclases. Adv Sec Mess Phos Prot Res 1998; 32: 1
  • de Rooij J., Zwartkruis F.J.T., Verheijen M.H.G., Cool R.H., Nijman S.M.B., Wittinghofer A., Bos J.L. Epac is a Rapl guanine-nucleotide-exchange factor directly activated by cAMP. Nature 1998; 396: 474
  • Nesterova M., Cho-Chung Y.S. A single-injection protein kinase A-directed antisense treatment to inhibit tumour growth. Nat Med 1995; 1: 528
  • Ciardiello F., Caputo R., Bianco R., Damiano V., Pomatico G., Pepe S., Bianco A.R., Agrawal S., Mendelsohn J., Tortora G. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. JNCI 1998; 90: 1087
  • Tortora G., Tagliaferri P., Clair T., Colamonici O., Neckers L.M., Robins R.K., Cho-Chung Y.S. Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic and acute lymphocytic human leukemia cell lines. Blood 1988; 71: 230
  • Van Lookeren Campagne M.M., Diaz F.V., Jastorff B., Kessin R.H. 8-chloroadenosine 3′,5′-monophosphate inhibits the growth of chinese hamster ovary and Molt 4 cells through its adenosine metabolite. Cancer Res 1991; 51: 1600
  • Han Z., Chatterjee D., Wyche J.H. Proliferation of nontransformed cells is inhibited by adenosine metabolite of but not by parenteral 8-Cl-cAMP. J Pharm Exper Therap 1993; 265: 790
  • Mentz F., Merleral H.-B., Ouaaz F., Binet J.-L. Theophylline, a new inducer of apoptosis in B-CLL: role of cylic nucleotides. Br. J. Hematol. 1995; 90: 957
  • Mentz F., Mossalayi M.D., Ouaaz F., Baudet S., Issaly F., Ktorza S., Semichon J-L., Binet, Merle-Beral H. Theophylline synergizes with chlorambucil in inducing apoptosis of B-chronic lymphocytic leukemia cells. Blood 1996; 88: 2172
  • Mentz F., Merleral H.-B., Dalloul A. Theophylline-induced B-CLL apoptosis is partly dependent on cyclic AMP production but independent of CD38 expression and endogenous IL-10 production. Leukemia 1999; 13: 78
  • Myers D., Chandannglie M.-L., Chelstrom L., Uckun F. In vitro and in vivo anti-leukemic efficacy of cyclic AMP modulating agents against human leukemic B cell precursors. Leukemia and Lymphoma 1996; 22: 259
  • Hardin J.A., Sherr D.H., DeMaria M., Lopez P.A. A simple fluorescence method for surface antigen phenotyping of lymphocytes undergoing DNA fragmentation. J. Immunol. Methods 1992; 154: 99
  • Binet J.-L., Mentz F., Leblond V., Merle-Beral H. Synergistic action of alkylating agents and methylxanthine derivatives in the treatment of chronic lymphocytic leukemia. Leukemia 1995; 9: 2159
  • Makower D., Malik U., Novik Y., Wiernik P. Therapeutic efficacy of theophylline in chronic lymphocytic leukemia. Med Oncol 1999; 16: 69
  • Houslay M.D., Milligan G. Tailoring CAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci. 1997; 217
  • Kim D.H., Lerner A. Type 4 cyclic adenosine monophosphate phosphodiesterase as a therapeutic target in chronic lymphocytic leukemia. Blood 1998; 92: 2484
  • Iannone M.A., Wolberg G., Zimmerman T.P. Chemotactic peptide induces cAMP elevation in human neutrophils by amplification of the adenylate cyclase response to endogenously produced adenosine. J Biol Chem 1989; 264: 20177
  • Epstein P.M., Moraski S., Hachisu R. Identification and characterization of Ca2+-calmodulin-sensitive cyclic nucleotide phosphodiesterase in a human lymphoblastoid cell line. Biochem. J. 1987; 243: 533
  • Epstein P.M., Mills J.S., Ross C.P., Strada S.J., Hersh E.M., Thompson W.J. Increased cyclic nucleotide phosphodiesterase activity associated with proliferation and cancer in human and murine lymphoid cells. Cancer Res. 1977; 37: 4016
  • Hurwitz R.L., Hirsch K.M., Clark D.J., Holcombe V.N., Hurwitz M.Y. Induction of a calcium/calmodulin-dependent phosphodiesterase during PHA-stimulated lymphocyte mitogenesis. J. Biol. Chem. 1990; 265: 8901
  • Tenor H., Staniciu L., Schudt C., Hatzelmann A., Wendel A., Djukanovic R., Church M.K., Shute J.K. Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin Exper Aller 1995; 25: 616
  • Gantner F., Gotz C., Gekeler V., Schudt C., Wendel A., Hatzelmann A. Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation. Br J Pharmacol 1998; 123: 1031
  • Jiang X., Li J., Paskind M., Epstein P.M. Inhibition of calmodulin dependent phosphodiesterase induces apoptosis in human leukemic cells. Proc. Natl. Acad. Sci. USA 1996; 93: 11236
  • Wijkander J., Landstrom T.R., Manganiello V., Belfrage P., Degerman E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology 1998; 139: 219
  • Maurice D.H., Haslam R.J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 1990; 37: 671
  • Sheth S.B., Chaganti K., Bastepe M., Ajuria J., Brennan K., Biradovolu R., Colman R.W. Cyclic AMP phosphodiesterases in human lymphocytes. Br. Journal of Haematology 1997; 99: 784
  • Giembycz M.A., Corrigan C.J., Seybold J., Newton R., Barnes P.J. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. British Journal of Pharmacology 1996; 118: 1945
  • Erdogan S., Houslay M.D. Challenge of human Jurkat T cells with the adenylate cyclase activator forskolin elicits major changes in cAMP PDE expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down regulating a novel PDE4A splice variant. Biochem. J. 1997; 321: 165
  • Seybold J., Newton R., Wright L., Finney P.A., Suttorp N., Barnes P.J., Adcock I.M., Giembycz M.A. Induction of phosphodiesterases 3A, 4A4, 4D1, 4D2 and 4D3 in Jurkat T cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor antagonists. J Biol Chem 1998; 273: 20575
  • Houslay M.D., Sullivan M., Bolger G.B. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Advances in Pharmacology 1998; 44: 225
  • Conti M., Jin S.C., Monaco L., Repaske D.R., Swinnen J.V. Hormonal regulation of cyclic nucleotide phosphodiesterases. Endocrin. Rev. 1991; 12: 218
  • Torphy T.J., Zhou H.L., Cieslinski L.B. Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity. J. Pharmacol. Exper. Ther. 1992; 263: 1195
  • Turner C.R., Andresen C.J., Smith W.B., Watson J.W. Effects of rolipram on responses to acute and chronic antigen exposure in monkeys. Am J Res Crit Care Med 1994; 149: 1153
  • Genain C.P., Roberts T., Davis R.L., Nguyen M.H., Uccelli A., Faulds D., Li Y., Hedgpeth J., Hauser S.L. Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor. Proc. Natl. Acad. Sci. USA. 1995; 92: 3601
  • Semmler J., Wachtel H., Endres S. The specific type IV PDE inhibitor rolipram suppresses tumor necrosis factor alpha production by human mononuclear cells. Int. J. Immunopharmacol. 1993; 15: 409
  • Platzer C., Meisel C., Vogt K., Platzer M., Volk H.D. Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int Immunol 1995; 7: 517
  • Michie A.M., Lobban M., Muller T., Harnett M.M., Houslay M.D. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine(EHNA) and rolipram. Cellular Signalling 1996; 8: 97
  • Baroja M.L., Cieslinski L.B., Torphy T.J., Wange R.L., Madrenas J. Specific CD3 epsilon association of a phosphodiesterase 4B isoform determines its selective tyrosine phosphorylation after CD3 ligation. J Immunol 1999; 162: 2016
  • Michaeli T., Bloom T.J., Martins T., Loughney K., Ferguson K., Riggs M., Rodgers L., Beavo J.A., Wigler M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 1993; 268: 12925
  • Bloom T.J., Beavo J.A. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc. Natl. Acad. USA 1996; 93: 14188
  • Li L., Yee C., Beavo J.A. CD3 and CD28-dependent induction of PDE7 required for T cell activation. Science 1999; 283: 848
  • Epstein P.M., Strada S.J., Sarada K., Thompson W.J. Catalytic and kinetic properties of purified high affinity cAMP phosphodiesterase from dog kidney. Arch Biochem Biophys 1982; 215: 183
  • Hebenstreit G., Fellerer K., Fichte K., Fischer G., Geyer N., Meya U., Y-HernandezSastre M., Schony W., Schratzer M., Soukop W., Trampitsch E., Varosanec S., Zawada E., Zochling R. Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 1989; 22: 156
  • Torphy T.J., Stadel J.M., Burman M., Cieslinski L.B., McLaughlin M.M., White J.R., Livi G.P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem 1992; 267: 1798
  • Souness J.E., Rao S. Proposal for pharmacologically distinct conformers of PDE4 cAMP phosphodiesterases. Cell Signal 1997; 9: 227
  • Barnette M., Christensen S., Essayen D., Grous D., Prabhakar U., Rush J., Kageybotka A.-S., Torphy T. SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: In vitro anti-inflammatory actions. J Pharmacol and Exper Ther 1998; 284: 420
  • Dell'Acqua M.L., Scott J.D. Protein Kinase A Anchoring. J. Biol. Chem. 1997; 272: 12881
  • O'Connell J.C., McCallum J.F., McPhee I., Wakefield J., Houslay E.S., Wishart W., Bolger G., Frame M., Houslay M.D. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem. J. 1996; 318: 255
  • Nemoz G., Sette C., Conti M. Selective activation of rolipram-sensitive, cAMP-specific phosphodiesterase isoforms by phosphatidic acid. Mol Pharmacol 1997; 51: 242
  • Sjoberg J., Aguilar-Santelises M., Sjogren A.-M., Pisa E.K., Ljungdahl A., Bjorkholm M., Jondal M., Mellstedt H., Pisa P. Interleukin 10 mRNA expression in B cell chronic lymphocytic leukemia inversely correlates with progression of disease. Br J Haematol 1996; 92: 393
  • Fluckiger A.-C., Durand I., Banchereau J. Interleukin 10 induces apoptotic cell death of B-chronic lymphocytic leukemia cells. J Exp Med 1994; 179: 91
  • Jurlander J., Lai C.-F., Tan J., Chou C.-C., Geisler C.H., Schriber J., Blumenson L.E., Narula S.K., Baumann H., Caligiuri M.A. Characterization of interleukin-10 receptor expression on B cell chronic lymphocytic leukemia cells. Blood 1997; 89: 4146
  • Foa R., Massaia M., Cardona S., Tos A., Bianchi A., Attisano C., Guarini A., di Celle P., Fierro M. Production of tumor necrosis factor-alpha by B-cell chronic lymphocytic leukemia cells: a possible regulatory role of TNF in the progression of the disease. Blood 1990; 76: 393
  • Digel W., Stefanic M., Schoniger W., Buck C., Raghavachar A., Frickhofen N., Heimpel H., Porzsolt F. Tumor necrosis factor induces proliferation of neoplastic B cells from chronic lymphocytic leukemia. Blood 1989; 73: 1242
  • Reittie J., Yong K.L., Panayiotidis P., Hoffbrand A.V. Interleukin-6 inhibits apoptosis and tumour necrosis factor induced proliferation of B-chronic lymphocytic leukaemia. Leukemia & Lymphoma 1996; 22: 83
  • Eigler A., Greten T.F., Sinha B., Hasleberger C., Sullivan G.W., Endres S. Endogenous adenosine curtails lipopolysaccharide-stimulated TNF synthesis. Scand. J. Immunol. 1997; 45: 132
  • Marcoz P., Prigent A.F., Lagarde M., Nemoz G. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents. Mol. Pharmacol. 1993; 44: 1027
  • Jiang X., Paskind M., Weltzien R., Epstein P.M. Expression and regulation of mRNA for distinct isoforms of cAMP-specific PDE-4 in mitogen-stimulated and leukemic human lymphocytes. Cell Biochem Biophys. 1998; 28: 135
  • Loughney K., Hill T.R., Florio V.A., Uher L., Rosman G.J., Wolda S.L., Jones B.A., Howard M.L., McAllister-Lucas L.M., Sonnenburg W.K., Francis S.H., Corbin J.D., Beavo J.A., Ferguson K. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 1998; 216: 139
  • Pfister C., Bennett N., Bruckert F., Catty P., Clerc A., Pages F., Deterre P. Interactions of a G-protein with its effector: transducin and cGMP phosphodiesterase in retinal rods. Cell Signal 1993; 5: 235
  • Soderling S.H., Bayuga S.J., Beavo J.A. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc. Natl. Acad. Sci. USA 1998; 95: 8991
  • Fisher D.A., Smith J.F., Pillar J.S., St. Denis S.H., Cheng J.B. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem. 1998; 273: 15559
  • Fujishige K., Kotera J., Michibata H., Yuasa K., Takebayashi S., Okumura K., Omori K. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999; 274: 18438
  • Soderling S.H., Bayuga S.J., Beavo J.A. Isolation and characterization of a dual substrate phosphodiesterase gene family: PDE10A. Proc. Natl. Acad. Sci. USA. 1999; 96: 7071

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.