90
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Stromal Cell CD9 and the Differentiation of Hematopoietic Stem/Progenitor Cells

, , , &
Pages 147-152 | Received 05 Nov 1999, Published online: 01 Jul 2009

References

  • Kincade P. W., Oritani K., Zheng Z., Borghesi L., Smith-son G., Yamashita Y. Cell interaction molecules utilized in bone marrow. Cell Adhes Commun 1998; 6: 211–215
  • Oritani K., Kincade P. W. Lymphopoiesis and matrix glycoprotein SC1/ECM2. Leuk Lymphoma 1998; 32: 1–7
  • von Kalle C., Glimm H., Schulz G., Mertelsmann R., Henschler R. New developments in hematopoietic stem cell expansion. Curr Opin Hematol 1998; 5: 79–86
  • Brugger W., Kanz L. Ex vivo expansion of hematopoietic precursor cells. Curr Opin Hematol 1996; 3: 235–240
  • Spyridonidis A., Mertelsmann R., Henschler R. Hematopoietic cell proliferation and differentiation. Curr Opin Hematol 1996; 3: 321–328
  • Wright M. D., Tomlinson M. G. The ins and outs of the transmembrane 4 superfamily. Immunot Today 1994; 15: 588–593
  • Maecker H. T., Todd S. C., Levy S. The tetraspan superfamily: molecular facilitators. FASEB J 1997; 11: 428–442
  • Oritani K., Wu X., Medina K., Hudson J., Miyake K., Gimble J. M., Burstein S. A., Kincade P. W. Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood. 1996; 87: 2252–2261
  • Aoyama K., Oritani K., Yokota T., Ishikawa J., Nishiura T., Miyake K., Kanakura Y., Torniyama Y., Kincade P. W., Matsuzawa Y. Stromal cell CD9 regulates differentiation of hematopoietic sterdprogenitor cells. Blood 1999; 93: 2586–2594
  • Radford K. J., Thorne R. F., Hersey P. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with betal integrins in human melanoma. Biochem Biophys Res Commun 1996; 222: 13–28
  • Berditchevski F., Bazzoni 6., Hemler M. E. Specific association of CD63 with the VLA-3 and VLA-6 integrins. J Biol Chem 1995; 270: 17784–17790
  • Rubinstein E., Le Naour F., Lagaudriere-Gesbert C., Billard M., Conjeaud H., Boucheix C. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 1996; 26: 2657–2665
  • Imai T., Yoshie O. C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type I are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 1993; 151: 6470–6481
  • Tedder T. F., Zhou L. J., Engel P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 1994; 15: 437–442
  • Boucheix C., Benoit P., Frachet P., Billard M., Worthington R. E., Gagnon J., Uzan G. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Biol Chem 1991; 266: 117–122
  • Atkinson B., Ernst C. S., Christ B. F., Herlyn M., Blaszczyk M., Ross A. H., Herlyn D., Steplewski Z., Koprowski H. Identification of melanoma-associated antigens usinf fixed tissue screening of antibodies. Cancer Res 1984; 44: 2577–2581
  • Ikeyama S., Koyama M., Yamaoka M., Sasada R., Miyake M. Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 1993; 177: 1231–1237
  • Miyake M., Nakano K., Itoi S. I., Koh T., Taki T. Motility-related protein-1 (MRP-I/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 1996; 56: 1244–1249
  • Oren R., Takahashi S., Doss C., Levy R., Levy S. TAPA-I, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 1990; 10: 4007–4015
  • Todd S. C., Lipps S. G., Crisa L., Salomon D. R., Tsou-kas C. D. CD81 expressed on human thymocytes mediates integrin activation and IL-2-dependent proliferation. J Exp Med 1996; 184: 2055–2060
  • Slupsky J. R., Seehafer J. G., Tang S. -C., Masselis-Smith A., Shaw A. R. E. Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein Iib-IIIa complex. J Biol Chem 1989; 264: 12289–12293
  • Higashihara M., Maeda H., Shibata Y., Kume S., Ohashi T. A monoclonal antihuman platelet anti body: a new platelet aggregating substance. Blood 1985; 65: 382–391
  • Miller J. L., Kupinski J. M., Hustad K. O. Characterization of a platelet membrane protein of low molecular weight associated with platelet activation following binding by monoclonal antibody AG-1. Blood 1986; 68: 743–751
  • Anton E. S., Hadjiargyrou M., Patterson P. H., Matthew W. D. CD9 plays a role in Schwann cell migration in vitro. J Neurosci 1995; 15: 584–595
  • Forsyth K. D. Anti-CD9 antibodies augment neutrophil adherence to endothelium. Immunology 1991; 72: 292–296
  • Deng C. T., Terasaki P. I., Iwaki Y., Hofman F. M., Koeffler P., Cahan L., Awar N., Billing R. A monoclonal antibody crossreactive with human platelets, megakaryo-cytes, and common acute lymphocytic leukemic cells. Blood 1983; 61: 759–764
  • Kemshead J. T., Fritschy J., Asser U., Sutherland R., Greaves M. F. Monoclonal antibodies defining markers with apparent selectivity for particular haemopoietic cell types may also detect antigens on cells of neural crest origin. Hybridoma 1982; 1: 109–123
  • Allen T. D., Testa N. G. Cellular interactions in erythroblastic islands in long-term bone marrow cultures, as studied by time-lapse video. Blood Cells 1991; 17: 29–38
  • Tsai S., Bartelmez S., Stinicka E., Collins S. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev 1994; 8: 2831–2841
  • Masellis-Smith A., Jensen G. S., Seehafer J. G., Slupsky J. R., Shaw A. R. E. Anti-CD9 monoclonal antibodies induce homotypic adhesion of pre-B cell lines by a novel mechanism. J Immunol 1990; 144: 1607–1613
  • Masellis-Smith A., Shaw A. R. CD9-regulated adhesion. Anti-CD9 monoclonal antibody induce pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin. J Immunol 1994; 152: 2768–2777
  • Brown J. G., Almond B. D., Naglich J. G., Eidels L. Hypersensitivity to diphtheria toxin by mouse cells expressing both diphtheria toxin receptor and CD9 antigen. Proc Natl Acad Sci USA 1993; 90: 8184–8188
  • Iwamoto R., Higashiyama S., Mitamura T., Taniguchi N., Klagsbrun M., Mekada E. Heparin-binding EGF-like growth factor, which acts as diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which upregulates functional receptors and diphtheria toxin sensitivity. EMEO J 1994; 13: 2322–2330
  • Higashiyama S., Iwamoto R., Goishi K., Raab G., Taniguchi N., Klagsbrun M., Mekada E. The membrane protein CD9/DRAP27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 1995; 128: 929–938

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.