121
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Cell Cycle and Transcriptional Control of Human Myeloid Leukemic Cells by Transforming Growth Factor Beta

&
Pages 235-246 | Received 24 Oct 1999, Published online: 01 Jul 2009

References

  • Masui T, Wakefield L M, Lechner J F, LaVeck M A, Spom M B, Harris C C. Type beta transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA 1986; 83: 2438–2442
  • Manning A M, Williams A C, Game S M, Paraskeva C. Differential sensitivity of human colonic adenoma and carcinoma cells to transforming growth factor beta (TGF-beta): conversion of an adenoma cell line to a tumorigenic pheno-type is accompanied by a reduced response to the inhibitory effects of TGF-beta. Oncogene 1991; 6: 1471–1476
  • Assoian R K, Komoriya A, Meyers C A, Miller D M, Spom M B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983; 258: 7155–7160
  • Derynck R, Lindguist P B, Lee A, Wen D, Tamm J. A new type of transforming growth factor-beta, TGF-beta 3. EMBO J 1988; 7: 3737–43
  • TenDijke P, Hansen P, Iwata K K, Pieler C, Foulkes J G. Identification of another member of the transforming growth factor type beta gene family. Proc. Natl. Acad. Sci. USA 1988; 85: 4715–4719
  • Jakowlew S B, Dillard P J, Kondiah P, Sporn M B, Roberts A B. Complementary deoxyribonucleic acid cloning of a novel transforming growth factor-beta messenger ribonucleic acid from chick embryo chondrocytes. Mol Endocrinol 1988; 2: 747–755
  • Jakowlew S B, Dillard P J, Kondiah P, Sporn M B, Roberts A B. Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor beta 4 from chicken embryo chondrocytes. Mol Endocrinol 1988; 1186–1195
  • Frolik C A, Dart L L, Meyers C A, Smith D M, Sporn M B. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA 1983; 80: 3676–3680
  • Roberts A B, Anzano M A, Meyers C A, Wideman J, Blacher R. Purification and properties of a type beta transforming growth factor from bovine kidney. Biochemistry 1983; 22: 5692–5698
  • Laiho M, DcCaprio J A, Ludlow J W, Livingston D M, Massague J. Growth inhibition by TGFβ linked to suppression of retinoblastoma protein phosphorylation. Cell 1990; 62: 175–185
  • Furukawa Y, Uenoyama S, Ohta M, Tsunoda A, Griffin J D, Saito M. Transforming growth factor-beta inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSK-I. J Biol Chem, 267: 17121–1992
  • Howe P H, Dractta G, Leof E B. Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and his-tone HI kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol 1991; 11: 1185–1194
  • Pietenpol J A, Stein R W, Moran E, Yaciuk P, Schlegel R, Lyons R M, Pittelkow M R, Munger K, Howley P M, Moses H L. TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 1990; 61: 777–785
  • Shipley G D, Tucker R F, Moses H L. Type β transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged pre-replicative interval. Proc. Natl Acad. Sci USA 1995; 82: 4147–4151
  • Geng Y, Weinberg R A. Transforming growth factor beta effect on expression of G1 cyclins and cycli-dependent protein kinases. Proc. Natl. Acad. Sci. USA 1993; 90: 10315–10319
  • Koff A, Ohtsuki M, Polyak K, Roberts J M, Massague J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science 1993; 260: 536–539
  • Ewen M E, Sluss H K, Whitehouse L L, Livingston D M. TGF beta inhibition of cdk4 synthesis is linked to cell cycle arrest. cell 1993; 74: 1009–1020
  • Slingerland J M, Hengst L, Pan C-H, Alexander D, Stampfer M R, Reed S I. A novel inhibitor of cyclin-cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol. Cell. Biol. 1994; 14: 3683–3694
  • Pietenpol J A, Holt J T, Stein R W, Moses H L. Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc. Natl. Acad. Sci USA 1990; 87: 3758–3762
  • Inaba T, Matsushime H, Valentine M, Roussel M F, Sherr C J, Look A T. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 1992; 13: 565–574
  • Kiyokawa H, Busquets X, Powell C T, Ngo L, Rifkind R A, Marks P A. Cloning of a D-type cyclin from murine erythroleukemia cells. Proc Natl. Acad. Sci. USA 1992; 89: 2444–2447
  • Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M, Roberts J M. Human cyclin E, a new cylin that interacts with two members of the CDC2 gene family. Cell 1991; 66: 1217–1228
  • Lew D J, Dulic V, Reed S I. Isolation of three novel human cyclins by rescue of Gl cyclin (CLn) function in yeast. Cell 1991; 66: 1197–1206
  • Matsushime H, Roussel M F, Ashmun R A, Sherr C J. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 1991; 65: 701–713
  • Motokura T, Bloom T, Kim H G, Juppner H, Ruderman J V, Kronenberg H M, Arnold A, Motokura T, Keyomarsi K, Kronenberg H M, Arnold A. Cloning and characterization of human cyclin D3, a cDNA closely related in sequence to the PRAD1/cyclin Dl proto-oncogene. J. Biol. Chem. 1992; 267: 20412–20415
  • Xiong Y, Connolly T, Futcher B, Beach D. Human D-type cyclin. Cell 1991; 65: 691–699
  • Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C, Peters G. Cdk6 (PLSTIRE) and cdk4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin Dl. Oncogene 1994; 9: 71–79
  • Dou Q-P, Levin A H, Zhao S, Pardee A B. Cyclin E and cyclin A as candidates for the restriction point protein. Cancer Res. 1993; 53: 1493–1497
  • Koff A, Giordano A, Desai D, Yamashita K, Harper J W, Elledge S, Nishimoto T, Morgan D O, Franza B R, Roberts J M. Formation and activation of a cyclin E-cdk2 complex during the Gl phase of the human cell cycle. Science 1992; 257: 1689–1694
  • Matsuoka M, Kato J Y, Fisher R P, Morgan D O, Sherr C J. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol. Cell Bio. 1994; 14: 7265–7275
  • Matsushime H, Ewen M E, Strom D K, Kato J Y, Hanks S K, Roussel M F, Shern C J. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G cyclins. Cell 1992; 71: 323–334
  • Matsushime H, Quelle D E, Shurtletf S A, Shibuya M, Sherr C J, Kato J Y. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell. Biol. 1994; 14: 2066–2076
  • Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 1994; 14: 2077–2086
  • Pagano M, Pepperkok R, Lukas J, Baldin V, Ansorge W, Bartek J, Draetta G. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 1993; 121: 101–111
  • Resnitzky Gossen M, Bujard H, Reed S I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 1994; 14: 1669–1679
  • Tsai L, Lees E, Faha B, Harlow E, Riabowol K. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 1993; 8: 1593–1602
  • Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple potein kinases and the DNA replication and repair factor PCNA. Cell 1992; 71: 505–514
  • Morgan D O. Cell cycle control in normal and neoplastic cells. Curr. Opin. Genet. Dev. 1992; 2: 33–37
  • Motokura T, Arnold A. cyclins and oncogenesis. Biophys. Acta 1993; 1155: 63–78
  • Norbury C, Nurse P. Animal cell cycles and their control. Annu. Rev. Biochem 1992; 61: 441–470
  • Rosenblatt J, Gu Y, Morgan D O. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl. Acad. Sci. USA 1992; 89: 2824–2828
  • Nasmyth K. Control of the yeast cell cycle by the Cdc 28 protein kinase. Curr Opin Cell Bio 1993; 15: 166–179
  • Koff A., Giordano A., Desai D., Yamashita K., Harper J. W., Elledge S., Nishimoto T., Morgan D. O. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 1992; 257: 1689–94
  • Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30
  • Dynlacht B. D. Regulation of transcription by proteins that control the cell cycle. Nature 1997; 389: 149–152
  • DeCaprio J. A., Ludlow J. W., Lynch D., Furukawa Y., Griffin J., Piwnica H., Worms Huang C. M., Livingston D. M. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58: 1085–1095, 1989
  • Buchkovich K., Duffy L. A., Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105
  • Chen P. P., Scully J. Y., Shew Wang J. Y., Lee W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellula differentiation. Cell 1989; 58: 1193–98
  • Mihara K., Cao X. R., Yen A., Chandler S., Driscoll B., Amurphree L., Tang A., Fung Y K. Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 1989; 246: 1300–1303
  • Beijersbergen R. L., Kerkhoven R. M., Zhu L., Carlee L., Voorhoeve P. M., Bernards R. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with pl07 in vivo. Genes Dev. 1994; 8: 2680–90
  • Hijmans E. M.P.M., Voorhoeve R. L., Beijersbergen L. J., Van't Veer, Bernnards R. E2F-5, a new family member that interacts with pi30 in vivo. Mol Cell Biol 1995; 15: 3080–3089
  • Sardet C., Vidal M., Cobrinik D., Geng Y., Onufryk C, Chen A., Weinberg R. A. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 1995; 92: 2403–2407
  • Vairo G., Livingston D. M., Ginsberg D. Functional interaction between E2F-4 and pi30: Evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 1995; 9: 869–881
  • Ikeda M., Jakoi L., Nevins J. R. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci USA 1996; 93: 3215–3220
  • Moberg K., Starz M. A., Lees J. A. E2F-4 switches from p130 to p107 and pRb in response to cell cycle reentry. Mol Cell biol 1996; 16: 1436–1449
  • Hurford R. K., Cobrinik D., Jr, Lee M. H., Dyson N. pRB and pl07/pl30 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 1997; 11: 1447–1463
  • Shirodkar S., Ewen M., DeCaprio J. A., Morgan J., Livingston D. M., Chittenden T. The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 1992; 68: 157–166
  • Schwarz J. K., Devoto S. H., Smith E. J., Chellappan S. P., Jakoi L., Nevins J. R. Interactions of the pl07 and Rb proteins with E2F during the cell proliferation response. EMBO J 1993; 12: 1013–1020
  • Hinds P. W., Mittnacht S., Dulic V, Arnold A., Reed S. I., Weinberg R. A. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70: 993–1006
  • Hiebert S. W. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol Cell Biol 1993; 13: 338–91
  • Zhu L., Van der Heuvel S., Helin K., Fattaey A., Ewen M., Livingston D. M., Dyson N., Harlow E. Inhibition of cell proliferation by pl07, a relative of the retinoblastoma protein. Genes Dev. 1993; 7: 1111–1125
  • Qin X-Q., Livingston D. M., Ewen M., Sellers W. R., Arany Z., Kaelin W. G., Jr. The transcription factor E2F1 is a downstream target of RB action. Mol Biol Cell 1995; 15: 742–755
  • Qin X-Q, Chittenden T., Livingston D. M., Kaelin W. G., Jr. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev 1992; 6: 953–964, 1992
  • Hannon G J, Beach D. p151NK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371: 257–261
  • Kamb A, Gruis N A, Weaver-Feldhaus J, Lui O, Harshman K, Tavigian S V, Stocker E, Day R S, Johnson B E, Skolnick M H. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–440
  • Guan K L, Jenkins C W, Li Y, Nichols M A, Okeefe C L, Matera A G, Xiong Y. Growth suppression by pi8, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Gene & Dev 1994; 8: 2939–2952
  • Hirai H, Roussei M F, Kato J Y, Ashmum R A, Sherr C J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases cdk4 and cdk6. Mol Cell Biol 1995; 15: 2672–2681
  • Harper J W, Admi G R, Wei N, Keymarsi K, Elledge S J. The p21 cdk-interacting protein cip is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816
  • Hengst L, Dulic V, Slingerland J M, Lees E, Reed S I. A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad sci USA 1994; 91: 5291–5295
  • Polyak K, Lee M H, Bromage H E, Koff A, Roberts J M, Tempst P, Massague. Cloning of p27Kip 1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59–66
  • Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74
  • Matsuoka S, Edwards M C, Bai C, Parker S, Zhang P, Baldini A, Harpen J W, Elledge S J. P57KIP2, a structurally distinct member of the p21CIP1 cdk inhibitor family, is a candidate tumor suppressor gene. Gene & Dev. 1995; 9: 650–662
  • Reynisdottir I, Polyak K, Lavarone A., Massague J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995; 9: 1831–1845
  • Polyak K, Kato J, Solomon M J, Sherr C J, Massague J, Roberts J M, Koff A. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 1994; 8: 9–22
  • Lee M H, Nikolic M, Baptista C A, Lai E, Tsai L H, Nassague J. The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 1996; 93: 3259–3263
  • Porter P L, Malone K E, Heagerty P J, Alexander G M, Gatli L A, Firpo E J, Daling J R, Roborts J M. Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Med. 1997; 3: 222–225
  • Loda M, Cukor B, Tarn S W, Lavin P, Fiorentino M, Drgetta G F, Milbum-Jessup J, Pagano M. Increased protea-some-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med. 1997; 3: 231–234
  • Blain S W, Montalvo E. and Massague Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J. Bio. Chem. 1997; 272: 25863–25872
  • Harper J W, Elledge S J, Keyomarsi K, Dynlacht B, Tsai L H, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, Fox M P, Wei N. Inhibition of cyclin-dependent kinases by p21. Mol Biol. Cell 1995; 6: 387–400
  • Soos T J, Kiyokawa H, Yan J S, Rubin M S, Giordano A, DeBlasio A, Bottega S, Wong B, Mendolsohn J, Koff A. Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ 1996; 7: 135–146
  • Sporn M B, Roberts A B, Wakefield L M, Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor beta. J Cell Biol 1987; 105: 1039
  • Fava R A, Casey T T, Wilcox J, Pelton R W, Moses H L, Nanney L B. Synthesis of transforming growth factor-β by megakaryocytes and its location to megakaryocyte and plate-let-a granules. Blood 1990; 76: 1946
  • Sing G K, Keller J R, Ellingsworth L R, Ruscetti F W. Transforming growth factor-β selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood 1988; 11: 1504–1511
  • Keller J R, McNiece I K, Sill K T, Ellingsworth L R, Quesenberry P J, Ruscetti F W. Transforming growth factor-P 1 directly regulates primitive murine hematopoietic cell proliferation. Blood 1990; 75: 596–602
  • Ottmann O. G., Pelus L M. Differential proliferative effects of transforming growth factor-β on human hematopoietic progenitor cells. J. Immunol. 1991; 140: 2661–2665
  • Snoeck H-W., Weekx S., Moulijn A., Lardon F., Lenjou M., Nys F., Van Ranst P. C.F., Van Bockstaele D. R., Berneman Z. N. Tumor necrosis factor a is a potent synergistic factor for the proliferation of primitive human hematopoietic progenitor cells and induces resistance to transforming growth factor P but not to interferon γ. J. Exp. Med. 1996; 183: 705–710
  • Keller J R, Jacobsen S EW, Dubois C M, Hestda I K, Ruscetti F W. Transforming growth factor-β: A bidirectional regulator of hematopoietic cell growth. Int. J. Cell Cloning 1992; 10: 2–11
  • Sitnicka E, Ruscetti F W, Priestley G V, Wolf N S, Bartelmez S H. Transforming growth factor pi directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 1996; 88: 82–88
  • Keller J R, Bartelmez S H, Sitnicka E, Ruscetti F W, Ortiz M, Gooya J M, Jacobsen S EW. Distinct and overlapping direct effects of macrophage inflammatory protein-1α and transforming growth factor p on hematopoietic progenitor/stem cell growth. Blood 1994; 84: 2175–2181
  • McNiece I K, Bertoncello I, Keller J R, Ruscetti F W, Hartley C A, Zsebo K M. Transforming growth factor P inhibits the action of stem cell factor on mouse and human hematopoietic progenitors. Int. J. Cell Cloning 1992; 10: 80–86
  • Keller J R, Jacobsen S EW, Sill K, Ellingsworth L, Ruscetti F W. Stimulation of granulopoiesis by transforming growth factor β: Synergy with granulocyte-macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. USA 1991; 88: 7190–7194
  • Goey H, Keller J R, Back T, Longo D L, Ruscetti F W, Wiltrout R H. Inhibition of early murine hematopoietic progenitor cell proliferation after in vivo localregional administration of transforming growth factor-β1. J Immunol 1989; 143: 877
  • Tessier N, Hoang T. Transforming growth factor beta inhibits the proliferation of the blast cells of acute myeloblastic leukemia. Blood 1988; 11: 159–164
  • Aglietta M, Stacchini A, Severino A, Sanavio F, Ferrando M L, Piacibello W. Interaction of transforming growth factor-beta with hematopoietic growth factors in the regulation of human normal and leukemic myelopoiesis. Exp Hematol 1989; 17: 296
  • Cashman J D, Eaves A C, Eaves C J. Granulocyte-macrophage colony-stimulating factor modulation of the inhibitory effect of transforming growth factor-beta on normal and leukemic human hematopoietic progenitor cells. Leukemia 1992; 6: 886
  • Okabe-Kado J, Honma Y, Hayashi M, Hozumi M. Inhibitory action of transforming growth factor-beta on induction of differentiation of myeloid leukemia cells. Jpn J Cancer Res. 1989; 80: 228–232
  • Kanatni Y, Kasukabe T, Okabe-Kado J, Hayashi S I, Yamamoto-Yamaguchi Y, Motoyoshi K, Nagata N, Honma Y. Transforming growth factor p and dexamethasone cooperatively enhance c-jun gene expression and inhibit the growth of human monocytoid leukemia cells. Cell Growth & Differ. 1996; 7: 187–196
  • Furukawa Y, Uenoyama S, Ohta M, Tsunoda A, Griffin J D, Saito M. Transforming growth factor-p inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSK-I. J. Biol. Chem. 1992; 267: 17121–17127
  • Hu X, Lynn Moscinski C., Zuckerman K S. Transforming growth factor-p (TGFP) inhibits growth of more differentiated myeloid leukemia cells and retinoblastoma protein phosphorylation at Ser 795. Exp Hematol 1999; 27: 605–614
  • Cheng M, Olivier P, Diehl J A, Fero M, Roussel M F, Roberts J M, Sherr C J. The p21cip1 and p27kip1 CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583
  • Koeffler H P. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 1983; 62: 709–721

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.