48
Views
6
CrossRef citations to date
0
Altmetric
Original Article

From the Study of Tumor Cell Immunogenicity to the Generation of Antitumor Cytotoxic Cells in Non-Hodgkin's Lymphomas

, , , , &
Pages 247-263 | Published online: 01 Jul 2009

References

  • Heslop H. E., Rooney C. M. Adoptive cellular immunotherapy for EBV lymphoproliferative diseases. Immunol Rev 1997; 157: 217–222
  • Hsu F. J., Benike C., Fagnoni F., Liles T. M., Czerwinski D., Taidi B., Engleman E. G., Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med 1996; 2: 52–58
  • Nestle F. O., Alijagic S., Gillet M., Sun Y., Grabbe S., Dummer R., Burg G., Schadendorf D. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nature Medicine 1998; 4: 328–332
  • Höltl L., Rieser C., Papesh C., Ramoner R., Bartsch G., Thurnher M. CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal cell cancer. Lancet 1998; 352: 1358–1358
  • Krieger J. I., Grammer S. F., Grey H. M., Chesnut R. W. Antigen presentation by splenic B cells: resting B cells are ineffective, whereas activated B cells are effective accessory cells for T cell responses. J. Immunol 1985; 135: 2937–2945
  • Eriksson Villacres M. Antigen presentation by naive macrophages, dendritic cells and B cells to primed T lymphocytes and their cytokine production following exposure to immunosfimulating complexes. Clin Exp Immunol 1995; 102: 46–52
  • Liu Y. J., Barthelemy C., De Bouteilleer O., Arpin C., Durand I., Banchereau J. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7–1 and B7–2. Immunity 1995; 2: 239–248
  • Milich D. R., Chen M., Schodel K, Peterson D. L., Jones J. E., Hughes J. L. Role of B cells in antigen presentation of the hepatitis B core. Proc Natl Acad Sci U S A 1997; 94: 14648–53
  • Constant S. B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J. Immunol 1999; 162: 5695–5703
  • Harris N. L., Jaffe E. S., Stein H., Banks P. M., Chan J. K.C., Cleary M. L., Delsol G., Dewolfpeeters C., Falini B., Gatter K. C., Grogan T. M., Isaacson P. G., Knowles D. M., Mason D. Y., Mullerhermelink H. K., Pileri S. A., Piris M. A., Ralfkiaer E., Wamke R. A. A revised european-american classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood 1994; 84: 1361–1392
  • Makgoba M. W., Sanders M. E., Shaw S. The CD2-LFA-3 and LFA-1-ICAM pathways: relevance to T-cell recognition. Immunol Today 1989; 10: 417–422
  • Springer T. A. Adhesion receptors of the immune system. Nature 1990; 346: 425–434
  • Clark E. A., Ledbetter J. A. How B cells and T cells talk to each other. Nature 1994; 367: 425–428
  • Tohma S., Hirohata S., Lipsky P. E. The role of CDlla/CD18-CD54 interactions in human T cell dependent B cell activation. J Immunol 1991; 146: 492–499
  • Le Guiner S., Le Drean E., Labarriere N., Fonteneau J.-F., Viret C., Diez E., Jotereau F. LFA-3 co-stimulates cytokine secretion by cytotoxic T lymphocytes by providing a TCR-independent activation signal. Eur. J. Immunol 1998; 28: 1322–1331
  • Koopman G., Keehnen R. M.J., Lindhout E., Newman W., Shimizu Y., Van Seventer G. A., De Groot C., Pals S. T. Adhesion through LFA-1 (CDlla/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B ceils. J. Immunol 1994; 152: 3760–3767
  • Shaw S., Luce G. E., Quinones R., Gress R. E., Springer T. A., Sanders M. E. Two antigen-independant pathways used human cytotoxic T-cell clones. Nature 1986; 323: 262–264
  • Jansen J. H., Van der Harst D., Wientjens G.-J. H.M., Kooy-Winkelaar Y. M.C., Brand A., Willemze R., Kluin-Nelemans H. C. Induction of CD1la/leucocyte function antigen-1 and CD54/intercellular adhesion molecule-1 on hairy cell leukemia cells is accompanied by enhanced susceptibility to T-cell but not lymphokine-activated killer-cell cytotoxicity. Blood 1992; 80: 478–483
  • Altomonte M., Gloghini A., Bertola G., Gasparollo A., Carbone A., Ferrone S., Maio M. Differential expression of cell adhesion molecules CD54/CDlla and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res 1993; 53: 3343–8
  • Foreman N. K., Rill D. R., Coustan S. E., Douglass E. C., Brenner M. K. Mechanisms of selective killing of neuroblastoma cells by natural killer cells and lymphokine activated killer cells. Potential for residual disease eradication. Br J Cancer 1993; 67: 933–8
  • Jacob M.-C., Agrawal S., Chaperot L., Giroux C., Gressin R., Le Marc'Hadour E, Fabre M., Sotto J.-J., Bensa J.-C., Plumas J. Quantification of cellular adhesion molecules (CAMs) on malignant B cells from non-Hodgkin's lymphoma. Leukemia 1999; 13: 1428–1433
  • Chaperot L., Jacob M.-C., Le Vacon R, Giroux C., Molens J.-P., Sotto J.-J., Bensa J.-C., Plumas J. Relationships between susceptibility to LAK cell-mediated lysis, conjugate formation and adhesion molecules expression in non Hodgkin's lymphomas. Leukemia and Lymphoma 1997; 28: 133–143
  • Qian K, Vaux D. L., Weissman I. L. Expression of the integrin 4aL4β1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 1994; 77: 335–347
  • Moller P., Hammerling G. J. The role of surface HLA-A,B,C molecules in tumour immunity. Cancer Surv 1992; 13: 101–27
  • Shieh D.-C., Gammon M. C., Zweering H. J., Kao K. J. Functional significance of varied quantitative and qualitative expression of HLA-A2.1 antigens in determining the susceptibility of cells to cytotoxic T lymphocytes. Human Immunol 1996; 46: 18–26
  • Rivoltini L., Barracchini K. C., Viggiano V., Kawakami Y, Smith A., Mixon A., Restifo N. P., Topalian S. L., Simonis T. B., Rosenberg S. A., Marincola F. M. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res 1995; 55: 3149–3157
  • Torres M. J., Ruizcabello R., Skoudy A., Berrozpe G., Jimenez P., Serrano A., Real F. X., Garrido F. Loss of an HLA haplotype in pancreas cancer tissue and its corresponding tumor derived cell line. Tissue Antigens 1996; 47: 372–381
  • Hiraki A., Kaneshige T., Kiura K., Ueoka H., Yamane H., Tanaka M., Harada M. Loss of HLA haplotype in lung cancer cell lines: implications for immunosur-veillance of altered HLA class I/II phenotypes in lung cancer. Clin Cancer Res 1999; 5: 933–936
  • Wang Z., Margulies L., Hicklin D. J., Ferrone S. Molecular and functional phenotypes of melanoma cells with abnormalities in HLA class i antigen expression. Tissue Antigens 1996; 47: 382–390
  • Perez B., Benitez R., Fernandez M. A., Oliva M R., Soto J. L., Serrano S., Lopez Nevot M. A., Garrido F. A new beta2 microglobulin mutation found in a melanoma tumor cell line. Tissue Antigens 1999; 53: 569–572
  • Benitez R., Godelaine D., Lopez Nevot M. A., Brasseur F., Jimenez P., Marchand M., Oliva M R., Van Baren N., Cabrera T., Andry G., Landry C., Ruiz Cabeilo P., Boon T., Garrido R. Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens 1998; 52: 520–529
  • Weiss S., Bogen B. B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc. Natl. Acad. Sci. USA 1989; 86: 282–286
  • Jacob M. C., Masson D., Plumas J., Chaperot L., Favre M., Gressin R., Bensa J. C. Analysis of HLA-I defects on the surface of malignant lymphoma B-cells (B-NHL) by CMF (Abstract). A.C. Pathol 1997; 14: 188
  • Amiot L., Onno M., Lamy T., Dauriac C., Le Prise J.-Y., Fauchet R., Drenou B. Loss of HLA molecules in B lymphomas is associated with an aggressive clinical course. Br. J. Haematol 1998; 100: 655–663
  • Moller P., Herrmann B., Moldenhauer G., Momburg R. Defective expression of MHC class I antigens is frequent in B-cell lymphomas of high grade malignancy. Int. J. Cancer 1987; 40: 32–39
  • Plumas J., Chaperot L., Jacob M. C., Giroux C., Mollens J. P., Sotto J. J., Bensa J. C. Malignant B lymphocytes induce allogeneic proliferative and cytotoxic T cell responses in primary mixed lymphocyte cultures. Eur. J. Immunol 1995; 25: 3332–3341
  • Garban E, Truman J. P., Lord J., Drenou B., Plumas J., Jacob M. C., Sotto J. J., Charron D., Mooney N. Signal transduction via human leucocyte antigen class II molecules distinguishes between cord blood, normal, and malignant adult B lymphocytes. Exp Hematol 1998; 26: 874–884
  • Pazmany L., Mandelboim O., Valesgomez M., Davis D. M., Reyburn H. T., Strominger J. L. Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science 1996; 274: 792–795
  • Rajagopalan S., Long E. O. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189: 1093–1100
  • Le Gal F. A., Riteau B., Sedlik C., Khalil Daher I., Menier C., Dausset J., Guillet J. G., Carosella E. D., Freiss Rouas N. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 1999; 11: 1351–1356
  • Paul P., Rouas Preiss N., Khalil Daher I., Moreau P., Riteau B., Le Gal F. A., Avril M. R., Dausset J., Guillet J. G., Carosella E. D. HLA-G expression in melanoma: a way for tumor cells to escape from immuno-surveillance. Proc Natl Acad Sci U S A 1998; 95: 4510–4515
  • Paul P., Cabestre F. A., Le Gal F. A., Khalil Daher I., Le Danff C., Schmid M., Mercier S., Avril M. F., Dausset J., Guillet J. G., Carosella E. D. Heterogeneity of HLA-G gene transcription and protein expression in malignant melanoma biopsies. Cancer Res 1999; 59: 1954–1960
  • Real L. M., Cabrera T., Collado A., Jimenez P., Garcia A., Ruiz Cabello F., Garrido F. Expression of HLA G in human tumors is not a frequent event. Int J Cancer 1999; 81: 512–518
  • Amiot L., Onno M., Renard D., Drenou B., Guillaudeux T, Le Bouteiller P., Fauchet R. HLA-G transcription studies during the different stages of normal and malignant hematopoiesis. Tissue Antigens 1996; 48: 609–614
  • Van den Eynde B., Bruggen V. D. T cell defined tumor antigens. Curr. Opin. Immunol 1997; 9: 684–693
  • Stevenson F. K., Zhu D., King C. A., Ashworth L. J., Kumar S., Hawkins R. E. Idiotypic DNA vaccines against B-cell lymphoma. Immunol Rev 1995; 145: 211–228
  • Terness P., Welschof M., Moldenhauer G., Jung M., Moroder L., Kirchhoff E, Kipriyanov S., Little M., Opelz G. Idiotypic vaccine for treatment of human B-cell lymphoma - Construction of IgG variable regions from single malignant B cells. Hum Immunol 1997; 56: 17–27
  • Chambost H., Van Baren N., Brasseur F., Godelaine D., Theate I., Spagnoli G. C., Xerri L., Plumas J., Michel G., Coulie P., Olive D. (Submitted) Expression of gene MAGE-A4 In Reed Sternberg cells
  • Vonderheide R. H., Hahn W. C., Schultze J. L., Nadler L. M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10: 673–679
  • Whang-Peng J., Knutsen T., Jaffe E. S., Steinberg S. M., Raffeld M, Zhao W. P., Duffey P., Condron K., Yano T., Longo D. L. Sequential analysis of 43 patients with non-hodgkin's lymphoma: clinical correlations with cytogenetic, histologic, immunophenotyping, and molecular studies. Blood 1995; 85: 203–216
  • Mannering S. I., McKenzie J. L., Feamley D. B., Hart D. N.J. HLA-DR1-restricted bcr-ab1 (b3a2)-specific CD4(+) T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 1997; 90: 290–297
  • Nieda M, Nicol A., Kikuchi A., Kashiwase K., Taylor K., Suzuki K., Tadokoro K., Juji T. Dendritic cells stimulate the expansion of bcr-ab1 specific CD8(+) T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia. Blood 1998; 91: 977–983
  • Freeman G. J., Freedman A. S., Segil J. M., Lee G., Whitman J. F., Nadler L. M. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol 1989; 143: 2714–2722
  • Freeman G. J., Gribben J. G., Boussiotis V. A., Ng J. W., Restivo V. A., Lombard L. A., Gray G. S., Nadler L. M. Cloning of B7–2 - a CTLA-4 counter-receptor that costimulates human T-Cell proliferation. Science 1993; 262: 909–911
  • June C., Ledbetter J., Linsley P., Thompson C. Role of the CD28 receptor in T cell activation. J. Immunol 1990; 11: 211–216
  • Norton S., Zuckerman L., Urdahl K., Shefner R., Miller J., Jenkins M. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. J. Immunol 1992; 149: 1556–1561
  • Noel P. J., Boise L. H., Green J. M., Thompson C. B. CD28 costimulation prevents cell death during primary T cell activation. J Immunol 1996; 157: 636–642
  • Radvanyi L. G., Shi Y. F., Vaziri H., Sharma A., Dhala R., Mills G. B., Miller R. G. CD28 costimulation inhibits TCR-induced apoptosis during a primary t cell response. J Immunol 1996; 156: 1788–1798
  • Walunas T. L., Bakker C. Y., Bluestone J. A. CTLA-4 ligation blocks CD28-dependem T cell activation. J Exp Med 1996; 183: 2541–2550
  • Walunas T. L., Lenschow D. J., Bakker C. Y., Linsley P. S., Freeman G. J., Green J. M., Thompson C. B., Blue-Stone J. A. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1: 405–413
  • Lee K.-M., Chuang E., Griffin M., Khattri R., Hong D. K., Zhang W., Straus D., Samelson L. E., Thompson B. C., Bluestone J. A. Molecular bases of T cell inactivation by CTLA-4. Science 1998; 282: 2263–2266
  • Fraser J. H., Rincon M., McCoy K. D., Le Gros G. CTLA4 ligation attenuates AP-1, NFAT and NF-kappaB activity in activated T cells. Eur J Immunol 1999; 29: 838–844
  • Koulova L., Clark E. A., Shu G., Dupont B. The CD28 ligand B7/BB1 provides costimularory signal for alloactivation of CD4+ T cells. J. Exp. Med 1991; 173: 759–762
  • Azuma M., Cayabyab M. N., Buck D., Phillips J. H., Lanier L. L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J. Exp. Med 1992; 175: 353–360
  • Schultze J. L., Cardoso A. A., Freeman G. J., Seamon M. J., Daley J., Pinkus G. S., Gribben J. G., Nadler L. M. Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc. Natl. Acad. Sci. USA 1995; 92: 8200–8204
  • Chaperot L., Plumas J., Jacob M.-C., Bost F, Molens J.-P., Sotto J.-J., Bensa J.-C. Functional expression of CD80 and CD86 allows immunogenicity of malignant B cells from non-Hodgkin's lymphomas. Exp. Hemalol 1999; 27: 479–488
  • Vyth Dreese F. A., Boot H., Dellemijn T. A., Majoor D. M., Oomen L. C., Laman J. D., Van Meurs M., De Weger R. A., De Jong D. Localization in situ of costimulatory molecules and cytokines in B-cell non-Hodgkin's lymphoma. Immunology 1998; 94: 580–586
  • Vyth-Dreese F. A., Dellemijn T. A.M., Majoor D., De Jong D. Localization in situ of the co-stimulatory molecules B7.1, B7.2, CD40 and their ligands in normal lymphoid tissue. Eur. J. Immunol 1995; 25: 3023–3029
  • Yellin M. J., Sinning J., Covey L. R., Sherman W., Lee J. J., Glickman-Nir E., Sippel K. C., Rogers J., Cleary A. M., Parker M., Chess L., Lederman S. T lymphocyte T cell-B cell-activating molecule/CD40-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity. J Immunol 1994; 153: 666–674
  • Ranheim E. A., Kipps T. J. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J. Exp. Med 1993; 177: 925–935
  • Watts T., Alaverdi N., Wade W., Linsley P. Induction of costimulatory molecule B7 in M12 B lymphomas by cAMP or MHC restricted T cell interaction. J. Immunol 1993; 150: 2192–2202
  • Nabavi N., Freeman G., Gault A., Godfrey D., Nadler M., Glimcher L. Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature 1992; 360: 266–268
  • Vallé A., Aubry J.-P., Durand I., Banchereau J. IL-4 and IL-2 up-regulate the expression of antigen B7, the B cell counterstructure to T cell CD28: an amplification mechanism for T-B cell interactions. Int. Immunol 1991; 3: 229–235
  • Stack R. M., Lenschow D. J., Gray G. S., Bluestone J. A., Fitch F. W. IL-4 treatment of small splenic B cells induces costimulatory molecules B7–1 and B7–2. J Immunol 1994; 152: 5723–5733
  • Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the Tumor Necrosis Factor family. Cell 1993; 75: 1169–1178
  • Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med 1989; 169: 1747–1756
  • Trauth B. C., Klas C., Peters A. M.J., Matzku S., Mbller P., Falk W., Debatin K. M., Krammer P. H. Monoclonal antibody mediated tumor regression by induction of apoptosis. Science 1989; 245: 301–305
  • Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–652
  • Kagi D., Vignaux E, Ledermann B., Burki K., Depraetere V, Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530
  • Rathmell J. C., Townsend S. E., Xu J. C., Flavell R. A., Goodnow C. C. Expansion or elimination of B cells in vivo: dual roles for CD40 and Fas (CD95) ligands modulated by the B cell antigen receptor. Cell 1996; 87: 319–329
  • Garrone P., Neidhardt E. M., Garcia E., Galibert L., Van Kooten C. J.B. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J. Exp. Med 1995; 182: 1265–1273
  • Schattner E. J., Elkon K. B., Yoo D. H., Tumang J., Krammer P. H., Crow M. K., Friedman S. M. CD40 ligation induces apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the apo-1/Fas pathway. J Exp Med 1995; 182: 1557–1565
  • Plumas J., Jacob M. C., Chaperot L., Molens J. P., Sotto J. J., Bensa J. C. Tumor B cells from non-Hodg-kin's lymphoma are resistant to CD95 (Fas/Apo-l)-mediated apoptosis. Blood 1998; 91: 2875–2885
  • Möller P., Henne C., Leithauser F., Eichelmann A., Schmidt A., Brilderlein S., Dhein J., Krammer P. Coregulation of the APO-1 antigen with intercellular adhesion molecule-1 (CD54) on tonsillar B cells and coordinate expression in follicular center B cells and in follicle center and mediastinal B-cell lymphomas. Blood 1993; 81: 2067–2075
  • Lagresle C., Mondiere P., Bella C., Krammer P. H., Defrance T. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1/Fas mediated apoptosis. J. Exp. Med 1996; 183: 1377–1388
  • Kondo E., Yoshino T, Yamadori I., Matsuo Y, Kawasaki N., Minowada J., Akagi T. Expression of bcl-2 protein and Fas antigen in non-Hodgkin's lymphomas. Am J Pathol 1994; 145: 330–337
  • Yang E., Korsmeyer S. J. Molecular thanatop-sis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401
  • Xerri L., Pare P., Brousset P., Schlaifer D., Hassoun J., Reed J. C., Krajewski S. Predominant expression of the long isoform of Bcl-X (Bcl-xL) in human lymphomas. Brit. J. Haematol 1996; 92: 900–906
  • Schneider T. J., Grillot D., Foote L. C., Nunez G. E., Rothstein T. L. Bcl-x protects primary B cells against Fas-mediated apoptosis. J Immunol 1997; 159: 4834–4839
  • Xerri L., Devilard E., Bouabdallah R., Hassoun J., Chaperot L., Birg F., Plumas J. Quantitative analysis detects ubiquitous expression of apoptotic regulators in B cell non-Hodgkin's lymphomas. Leukemia 1999; 13: 1548–1553
  • Okura T., Gong L., Kamitani T., Wada T, Okura I., Wei C.-E., Chang H.-M., Yeh E. T.H. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol 1996; 157: 4277–4281
  • Kataoka T, Schroter M., Hahne M., Schneider P., Irmler M., Thome M., Froelich C. J., Tschopp J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998; 161: 3936–3942
  • Schneider T. J., Fischer G. M., Donohoe T. J., Colarusso T. P., Rothstein T. L. A novel gene coding for a Fas inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes. J. Immunol. 1999; 189: 949–955
  • Kudoh S., Wang Q., Hidalgo O. F., Rayman P., Tubbs R. R., Edinger M. G., Kolenko V., Panuto J., Bukowski R., Finke J. H. Responses to T cell receptor CD3 and interleukin-2 receptor stimulation are altered in T cells from B cell non hodgkin's lymphomas. Cancer Immunol Immunother 1995; 41: 175–184
  • Wang Q., Stanley J., Kudoh S., Myles J., Kolenko V., Yi T. L., Tubbs R., Bukowski R., Finke J. T cells infiltrating non-Hodgkin's B cell lymphomas show altered tyrosine phosphorylation pattern even though T cell recep-tor/CD3-associated kinases are present. J Immunol 1995; 155: 1382–1392
  • Schwartzentruber D. J., Steler-Stevenson M., Rosenberg S. A., Topalian S. L. Tumor-infiltrating lymphocytes from select B-cell lymphomas secrete granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-a in response to autologous tumor stimulation. Blood 1993; 82: 1204–1211
  • Trinchieri G., Scott P. The role of interleukin 12 in the immune response, disease and therapy. Immunol Today 1994; 15: 460–463
  • Zeh H. J., Hurd S., Storkus W. J., Lotze M. T. Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors - implications for the immunotherapy of cancer. J Immunother 1993; 14: 155–161
  • Durum S. K., Schmidt J. A., Oppenheim J. J. Interleukin 1: an immunological perspective. Ann. Rev. Immunol 1985; 3: 263–287
  • Chaperot L., Delfeau-Larue M.-H., Jacob M.-C., Molens J. P., Roussel B., Agrawal S., Farcet J.-P., Gressin R., Sotto J.-J., Bensa J.-C., Plumas J. Differentiation of antitumor-specific cytotoxic T lymphocytes from autologous tumor infiltrating lymphocytes in non-Hodgkin's lymphomas. Exp. Hematol. 1999; 27: 1185–1193
  • Hirohata S. Human Thl responses driven by IL-12 are associated with enhanced expression of CD40 ligand. Clin Exp Immunol 1999; 115: 78–85
  • Peng X., Remade J. E., Kasran A., Huylebroeck D., Ceuppens J. L. IL-12 up-regulates CD40 Ligand (CD 154) expression on human T cells. J. Immunol 1998; 160: 1166–1172
  • Schultze J. L., Seamon M. J., Michalak S., Gribben J. G., Nadler L. M. Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood 1997; 89: 3806–3816
  • Rathmell J. C., Cooke M. P., Ho W. Y., Grein J., Townsend S. E., Davis M. M., Goodnow C. C. CD95 (fas) dependent elimination of self reactive B cells upon interaction with CD4(+) T cells. Nature 1995; 376: 181–184
  • Voorzanger N., Touitou R., Garcia E., Delecluse H. J., Rousset F., Joab I., Favrot M. C., Blay J. Y. Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res 1996; 56: 5499–5505
  • Moore K. W., O'Garra A., De Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol 1993; 11: 165–190
  • Taga K., Mostowski H., Tosato G. Human interleukin-10 can directly inhibit T-cell growth. Blood 1993; 81: 2964–2971
  • Steinbrink K., Jonuleit H., Muller G., Schuler G., Knop J., Enk A. H. Interleukin-10-treated human dendritic cells induce a melanoma-antigen- specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999; 93: 1634–1642
  • Buelens C., Willems E, Delvaux A., Pierard G., Delville J. P., Velu T., Goldman M. Interleukin-10 differentially regulates B7–1 (CD80) and B7–2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 1995; 25: 2668–2672
  • Bonnefoix T., Claret E., Piccini M. P., Jacob M. C., Zheng X., Sotto J. J. Detection, isolation and functional studies of CD25+ T cells in lymph nodes involved by B-cell non-Hodgkin's lymphomas. Scand. J. Immunol 1991; 34: 91–100
  • Diaz J. I., Edinger M. G., Stoler M. H., Tubbs R. R. Activated T-cell subsets in begnin lymphoid hyperplasias and B-cells non-Hodgkin's lymphomas. Am. J. Pathol 1991; 139: 503–509
  • Jacob M. C., Fabre M., LeMarc'Hadour E, Sotto M. F., Bonnefoix T, Sotto J. J., Bensa J. C. CD45RA expression by CD4 T lymphocytes in tumors invaded by B-cell non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD). Am. J. Hematol 1992; 39: 45–51
  • Agrawal S., Marquet J., Delfau Larue M. H., Copie Bergman C., Jouault H., Reyes E, Bensussan A., Farcet J. P. CD3 hyporesponsiveness and in vitro apoptosis are features of T cells from both malignant and nonmalig-nant secondary lymphoid organs. J Clin Invest 1998; 102: 1715–1723
  • Jacob M. C., Piccini M. P., Bonnefoix T., Sotto M. F., Couderc P., Bensa J. C., Sotto J. J. T lymphocytes from invaded lymph nodes in patients with B-cell-derived non-Hodgkin's lymphoma: reactivity toward the malignant clone. Blood 1990; 75: 1154–1162
  • Shi I., Bonnefoix X, Heuzelevacon E, Jacob M. C., Ler-Oux D., Gressin R., Sotto M. F., Chaffanjon P., Bensa J. C., Sotto J. J. Autotumour reactive T-cell clones among tumour-infiltrating T lymphocytes in B-cell non-hodgkin's lymphomas. Br J Haematol 1995; 90: 837–843
  • Umetsu D. T., Esserman L., Donlon T. A., DeKruyff R. H., Levy R. Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones. J. Immunol 1990; 144: 2550–2557
  • Martin I., Bonnefoix T., Roucard C., Perron P., Laj-Manovich A., Moine A., Leroux D., Sotto J. J., Garban F. Role of autologous CD4+ T cell clones in human B non-Hodgkin's lymphoma: aborted activation and Gl blockade induced by ceel-cell contact. Eur. J. Immunol 1999, in press
  • Rohrer J. W., Coggin J. H. CD8 T cell clones inhibit antitumor T cell function by secreting IL-10. J Immunol 1995; 155: 5719–5727
  • Schwaller J., Tobler A., Niklaus G., Hurwitz N., Hennig I., Fey M. F., Borisch B. Interleukin-12 expression in human lymphomas and nonneoplastic lymphoid disorders. Blood 1995; 85: 2182–2188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.