43
Views
4
CrossRef citations to date
0
Altmetric
Original Article

The CD9 Molecule on Stromal Cells

, &
Pages 265-270 | Received 17 Oct 1999, Published online: 01 Jul 2009

References

  • Maecker H. T., Todd S. C., Levy S. The tetraspanin superfamily. molecular facilitators. FASEB J 1997; 11: 428–442
  • Lee K. W., Shalaby K. A., Medhat A. M., Shi H., Yang Q., Karim A. M., LoVerde P. T. Schistosoma man-soni: characterization of the gene encoding Sm23, an integral membrane protein. Exp Parasitol 1995; 80: 155–158
  • Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome HI of C. elegans. Nature 1994; 368: 32–38
  • Kopczynski C. C., Davis G. W., Goodman C. S. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 1996; 271: 1867–70
  • Kersey J., Le Bien T, Abranson C. S., Newman R., Sutherland R., Greaves M. p24 a human leukemia associated and lymphohematopoietic progenitor cell surface structure identified with monoclonal antibody. J Exp Med 1981; 153: 726–731
  • Jones N. H., Borowitz M. J., Metzgar R. S. Characterization and distribution of a 24,000-molecular weight antigen defined by a monoclonal antibody (DU-ALL-1) elicited to common acute lymphoblastic leukemia (cALL) cells. Leuk Res 1982; 6: 449–464
  • Lanza F., Wolf D., Fox C. F., Kieffer N., Seyer J. M., Fried V. A., Coughlin S. R., Phillips D. R., Jennings L. K. cDNA cloning and expression of platelet p24/CD9. Evidence for a new family of multiple membrane-spanning proteins. J Biol Chem 1991; 266: 10638–10645
  • Boucheix C., Benoit P., Frachet P., Billard M., Worthington R. E., Gagnon J., Uzan G. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Bio Chem 1991; 266: 117–122
  • Miyake M., Koyama M., Seno M., Ikeyama S. Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31–15, which inhibits cell motility. J Exp Med 1991; 174: 1347–1354
  • Seehafer J. G., Shaw A. R. Evidence that the signal-initiating membrane protein CD9 is associated with small GTP-binding proteins. Biochem Biophys Res Commun 1991; 179: 401–406
  • Tole S., Patterson P H. Distribution of CD9 in the developing and mature rat nervous system. Dev Dyn 1993; 197: 94–106
  • Oritani K., Wu X., Medina K., Hudson J., Miyake K., Gimble J. M., Burstein S. A., Kincade P. W. Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood 1996; 87: 2252–2261
  • Borghesi L. A., Smithson G., Kincade P. W. Stromal cell modulation of negative regulatory signals that influence apoptosis and proliferation of B lineage lymphocytes. J Immunol 1997; 159: 4171–4179
  • Tanio Y., Yamazaki H., Kunisada T., Miyake K., Hayashi S. I. CD9 molecule expressed on stromal cells is involved in osteoclastogenesis. Exp Hematol 1999; 27: 853–859
  • Kincade P. W., Oritani K., Zheng Z., Borghesi L., Smithson G., Yamashita Y. Cell interaction molecules utilized in bone marrow. Cell Adhes Commun 1998; 6: 211–215
  • Aoyama K., Oritani K., Yokota T., Ishikawa J., Nishiura T., Miyake K., Kanakura Y., Tomiyama Y., Kincade P. W., Matsuzawa Y. Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells. Blood 1999; 93: 2586–2594
  • Mundy G. R., Roodman G. D. Osteoclast ontogeny and function. Bone Miner. Res, W. A. Peck. Elsevier Science Publishers B V., OxfordUK 1987; 209–279
  • Suda T., Udagawa N., Takahashi N. Cells of bone: Osteoclast generation. Principles of Bone Biology, J. P. Bilezikian, L. G. Raisz, G. A. Roden. Academic Press Inc., New York, NY 1996; 87–102
  • Hayashi S. I., Yamane T., Miyamoto A., Hemmi H., Tagaya H., Tanio Y, Kanda H., Yamazaki H., Kunisada T. Commitment and differentiation of stem cells to the osteoclast lineage. Biochem Cell Biol 1998; 76: 911–922
  • Udagawa N., Takahashi N., Akatsu T., Sasaki T, Yamaguchi A., Kodama H., Martin T. J., Suda T. The bone marrow-derived stromal cell line MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 1989; 125: 1805–1813
  • Athanasou N. A., Quinn J., Heryet A., McGee J. O. Localization of platelet antigens and fibrinogen on osteoclasts. J Cell Sci 1988; 89: 115–122
  • Yoshida H., Hayashi S. I., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T, Shultz L. D., Nishikawa S. I. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444
  • Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Mochizuki S. I., Tomoyasu A., Yano K., Goto M., Murakami A., Tsuda E., Morinaga T., Higashio K., Udagawa N., Takahashi N., Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998; 95: 3597–3602
  • Lacey D. L., Timms E., Tan H. L., Kelley M. J., Dunstan C. R., Burgess T., Elliott R., Colombero A., Elliott G., Scully S., Hsu H, Sullivan J., Hawkins N., Davy E., Capparelli C., Eli A., Qian Y. X., Kaufman S., Sarosi I., Shalhoub V., Senaldi G., Guo J., Delaney J., Boyle W. J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–176
  • Kong Y. Y., Yoshida H., Sarosi I., Tan H. L., Timms E., Capparelli C., Morony S., Oliveira-dos-Santos A. J., Van G., Itie A., Khoo W., Wakeham A., Dunstan C. R., Lacey D. L., Mak T. W., Boyle W. J., Penninger J. M. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–323
  • Simonet W. S., Lacey D. L., Dunstan C. R., Kelley M., Chang M. S., Lufhy R., Nguyen H. Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H. L., Trail G., Sullivan J., Davy E., Bucay N., Renshaw-Gegg L., Hughes T. M., Hill D., Patti-Son W., Campbell P., Boyle W. J. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319
  • Yasuda H., Shima N., Nakagawa N., Mochizuki S., Yano K., Fujise N., Sato Y., Goto M., Yamaguchi K., Kuriyama M., Morinaga T., Higashio K. Identity of osteo-clastgenesis inhibitory factor (OCIF) and osteoprogerin (OPG): A mechanism by which OPG/OCIF inhibits osteo-clastogenesis in vitro. Endocrinology 1998; 13: 1329–1337
  • Bucay N., Sarosi I., Dunstan C. R., Morony S., Tarpley J., Capparelli C., Scully S., Tan H. L., Xu W., Lacey D. L., Boyle W. J., Simonet W. S. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12: 1260–1268
  • Miyaura C., Onoe Y., Inada M, Maki K., Ikuta K., Ito M., Suda T. Increased B-lymphopoiesis by inter-leukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency. Proc Natl Acad Sci USA 1997; 94: 9360–9365
  • Rubinstein E., Le Naour F., Lagaudriere-Gesbert C., Biflard M., Conjeaud H., Boucheix C. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 1996; 26: 2657–2665
  • Berditchevski F., Zutter M M., Hemler M. E. Characterization of novel complexes on the cell surface between integrins and proteins with 4 domains (TM4 proteins). Mol Biol Cell 1996; 7: 193–207
  • Griffith L., Slupsky J., Seehafer J., Boshkov L., Shaw A. R. Platelet activation by immobilized monoclonal antibody: evidence for a CD9 proximal signal. Blood 1991; 78: 1753–1759
  • Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69: 1051–1061
  • Mitamura T., Iwamoto R., Umata T., Yomo T., Urabe I., Tsuneoka M., Mekada E. The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from Vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol 1992; 118: 1389–1399
  • Tai X. G., Yashiro Y., Abe R., Toyooka K., Wood C. R., Morris J., Long A., Ono S., Kobayashi M., Hamaoka T., Neben S., Fujiwara H. A role for CD9 molecules in T cell activation. J Exp Med 1996; 184: 753–758
  • Tachibana I., Hemler M. E. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol. 1999; 146: 893–904
  • Maecker H. T., Levy S. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 1997; 185: 1505–1510
  • Tsitsikov E. N., Gutierrez-Ramos J. C., Geha R. S. impaired CD 19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-l cells in CD81-deficient mice. Proc Natl Acad Sci USA 1997; 94: 10844–10849
  • Ikeyama S., Koyama M., Yamaoko M., Sasada R., Miyake M. Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 1993; 177: 1231–1237

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.