166
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Detection of Residual Disease in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia by Comparative Phenotype Mapping: Method and Significance

, , &
Pages 295-308 | Received 18 Nov 1999, Published online: 01 Jul 2009

References

  • Coustan-Smith E., Behm F. G., Sanchez J., Boyett J. M., Hancock M. L., Raimondi S. C., Rubnitz J. E., Rivera G. K., Sandlund J. T., Pui C. H., Campana D. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554
  • Cave H., Van der Werff ten Bosch J., Suciu S., Guidal C., Waterkeyn C., Otten J., Bakkus M., Thielemans K., Grandchamp B., Vilmer E, For the EORTC. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. New England Journal of Medicine 1998; 339: 591–598
  • Van Dongen J. J.M., Seriu T., Panzer-Grümayer E. R., Biondi A., Pongers-Willemse M. J., Coral L., Stolz F., Masera G., Kamps W. A., Gadner H., Van Wering E. R., Ludwig W. D., Basso G., De Bruijn A. C., Cazzaniga G., Hettinger K., Van der Does-van den Berg A., Hop W. C.J., Riehm H., Bartram C. R. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738
  • Wassermann R., Galili N., Ito Y., Silber J. H., Reichard B. A., Shane S., Womer R. B., Lange B., Rovera G. Residual disease at the end of the induction therapy as a predictor of relapse during childhood B-lineage acute lymphoblastic leukemia. Journal of Clinical Oncology 1992; 10: 1879–1888
  • Brisco M. J., Condon J., Hughes E., Neoh H-S., Sykes P. J., Seshadri R., Toogood I., Waters K., Tauro G., Ekert H., Morley A. A. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 1994; 343: 196–200
  • Steenbergen E. J., Verhagen O. J., Van Leeuwen E. F., Van den Berg H., Behrendt H., Slater R. M., Von dem Borne A. E., Van der Schoot C. E. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia. Leukemia 1995; 9: 1726–1734
  • Jacquy C., Delepaut B., Van Daele S., Vaerman J. L., Zenebergh A., Brichard B., Vermylen C., Cornu G., Martiat P. A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. British Journal of Haematology 1997; 98: 140–146
  • Foroni L., Coyle L. A., Papaioannou M., Yaxley J. C., Sinclair M. F., Chim J. S., Cannell P., Seeker-Walker L. M., Mehta A. B., Prentice H. G., Hoffbrand A. V. Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukemia reveals differences in treatment response. Leukemia 1997; 11: 1732–1741
  • Goulden N. J., Knechtli C. J., Garland R. J., Langlands K., Hancock J. P., Potter M. N., Steward C. G., Oakhill A. Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. British Journal of Haematology 1998; 100: 235–244
  • Ciudad J., San Miguel J. F., Lopez-Berges M. C., Vidriales B., Valverde B., Ocqueteau M., Mateos G., Caballero M. D., Hernandez J., Moro M. J., Mateos M. V., Orfao A. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. Journal of Clinical Oncology 1998; 16: 3774–3781
  • Wells D. A., Sale G. E., Shulman H. M., Myerson D., Bryant E. M., Gooley T., Loken M. R. Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. American Journal of Clinical Pathology 1998; 110: 84–94
  • Janossy G., Bollum F. J., Bradstock K. F., McMichael A., Rapson N., Greaves M. F. Terminal trans-ferase-positive human bone marrow cells exhibit the antigenic phenotype of common acute lymphoblastic leukemia. Journal of Immunology 1979; 123: 1525–1529
  • Janossy G., Bollum F. J., Bradstock K. F., Ashley J. Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood 1980; 56: 430–441
  • Greaves M. F. Analysis of the clinical and biological significance of lymphoid phenotypes in acute leukemia. Cancer Research 1981; 41: 4752–4766
  • Greaves M. F., Hariri G., Newman R. A., Sutherland D. R., Ritter M. A., Ritz J. Selective expression of the common acute lymphoblastic leukemia (gp 100) antigen on immature lymphoid cells and their malignant counterparts. Blood 1983; 61: 628–639
  • Greaves M. F. Differentiation-linked leukemogenesis in lymphocytes. Science 1986; 234: 697–704
  • Ryan D. H., Chappie C. W., Kossover S. A., Sandberg A. A., Cohen H. J. Phenotypic similarities and differences between CALLA-positive acute lymphoblastic leukemia cells and normal marrow CALLA-positve B cell precursors. Blood 1987; 70: 814–821
  • Hurwitz C. A., Loken M. R., Graham M. L., Karp J. E., Borowitz M. J., Pullen D. J., Civin C. I. Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood 1988; 72: 299–307
  • Bradstock K. F., Kerr A., Kabral A., Favaloro E. J., Hewson J. W. Coexpression of p165 myeloid surface antigen and terminal deoxynucleotidyl transferase: a comparison of acute myeloid leukaemia and normal bone marrow cells. American Journal of Hematology 1986; 23: 43–50
  • Adriaansen H. J., Hooijkaas H., Kappers-Klunne M. C., Hählen K., Van't Veer M. B., Van Dongen J. J.M. Double marker analysis for terminal deoxynucleotidyl transferase and myeloid antigens in acute nonlymphocytic leukemia patients and healthy subjects. Haematol. Bloodtransfusion 1990; 33: 41–49
  • Saeland S., Duvert V., Caux C., Pandrau D., Favre C., Valle A., Durand I., Charbord P., De Vries J., Banchereau J. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Experimental Hematology 1992; 20: 24–33
  • Uckun F. M. Regulation of human B-cell ontogeny. Blood 1990; 76: 1908–1923
  • Hurwitz C. A., Gore S. D., Stone K. D., Civin C. I. Flow cytometric detection of rare normal human marrow cells with immunophenotypes characteristic of acute lymphoblastic leukemia cells. Leukemia 1992; 6: 233–239
  • Smith R. G., Kitchens S. R. Phenotypic heterogeneity of TDT+ cells in the blood and bone marrow: Implications for surveillance of residual leukemia. Blood 1989; 74: 312–319
  • Saeland S., Duvert V., Pandrau D., Caux C., Durand I., Wrighton N., Wideman J., Lee F., Banchereau J. Interleukin-7 induces the proliferation of normal human B-cell precursors. Blood 1991; 78: 2229–2238
  • Dworzak M. N., Fritsch G., Fleischer C., Printz D., Fröschl G., Buchinger P., Mann G., Gadner H. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia 1997; 11: 1266–1273
  • Campana D., Pui C. H. Detection of minimal residual disease in acute leukemia: Methodologic advances and clinical significance. Blood 1995; 85: 1416–1434
  • Dworzak M. N., Fritsch G., Fröschl G., Printz D., Gadner H. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood 1998; 92: 3203–3209
  • Syrjälä M., Antilla V. J., Ruutu T., Jansson S. E. Flow cytometric detection of residual disease in acute leukemia by assaying blasts co-expressing myeloid and lymphatic antigens. Leukemia 1994; 8: 1564–1570
  • Ciudad J., Orfao A., Vidriales B., Macedo A., Martinez A., Gonzalez M., Lopez-Berges M. C., Valverde B., San Miguel J. F. Immunophenotypic analysis of CD 19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica 1998; 83: 1069–1075
  • Lavabre-Bertrand T., Janossy G., Ivory K., Peters R., Seeker-Walker L., Porwit-MacDonald A. Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry 1994; 18: 209–217
  • Farahat N., Lens D., Zomas A., Morilla R., Matutes E., Catovsky D. Quantitative flow cytometry can distinguish between normal and leukaemic B-cell precursors. British Journal of Haematology 1995; 91: 640–646
  • Dworzak M. N., Fritsch G., Fleischer C., Printz D., Fröschl G., Buchinger P., Mann G., Gadner H. Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Experimental Hematology 1998; 26: 305–313
  • Dworzak M. N., Stolz E, Fröschl G., Printz D., Henn X., Fischer S., Fleischer C., Haas O. A., Fritsch G., Gadner H., Panzer-Griimayer E. R. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: a study of five cases controlled by genetic methods. Experimental Hematology 1999; 27: 673–681
  • Farahat N., Morilla A., Owusu-Ankomah K., Morilla R., Pinkerton C. R., Treleaven J. G., Matutes E., Powles R. L., Catovsky D. Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. British Journal of Haematology 1998; 101: 158–164
  • Weir E. G., Cowan K., LeBeau P., Borowitz M. J. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999; 13: 558–567
  • Lucio P., Parreira A., Van den Beemd M. W.M., Van Lochem E. G., Van Wering E. R., Baars E., Porwit-MacDonald A., Bjorklund E., Gaipa G., Biondi A., Orfao A., Janossy G., Van Dongen J. J.M., San Miguel J. F. Flow cytometric analysis of normal B cell differentiation, a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419–427
  • Nadler L. M., Korsmeyer S. J., Anderson K. C., Boyd A. W., Slaughenhoupt B., Park E., Jensen J., Coral F., Mayer R. J., Sallan S. E., Ritz J., Schlossman S. F. B cell origin of non-T cell acute lymphoblastic leukemia - a model for discrete stages of neoplastic and normal pre-B cell differentiation. Journal of Clinical Investigation 1984; 74: 332–340
  • Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood 1987; 70: 1316–1324
  • Ryan D., Kossover S., Mitchell S., Frantz C., Hennessy L., Cohen H. Subpopulations of common acute lymphoblastic leukemia antigen-positive lymphoid cells in normal bone marrow identified by hematopoietic differentiation antigens. Blood 1986; 68: 417–425
  • Hokland P., Ritz J., Schlossman S. F., Nadler L. M. Orderly expression of B cell antigens during the in vitro differentiation of nonmalignant human pre-B cells. Journal of Immunology 1985; 135: 1746–1751
  • LeBien T. W., Wörmann B., Villablanca J. G., Law C. L., Steinberg L. M., Shah V. O., Loken M. R. Multiparameter flow cytometric analysis of human fetal bone marrow B cells. Leukemia 1990; 4: 354–358
  • Shah V. O., Civin C. I., Loken M. R. Flow cytometric analysis of human bone marrow. IV. Differential quantitative expression of T-200 common leukocyte antigen during normal hemopoiesis. Journal of Immunology 1988; 140: 1861–1867
  • Dworzak M. N., Fritsch G., Buchinger P., Fleischer C., Printz D., Zellner A., Schöllhammer A., Steiner G., Ambros P. F., Gadner H. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and periperal blood. Blood 1994; 83: 415–425
  • Paolucci P., Hayward A. R., Rapson N. T. Pre-B and B cells in children on leukaemia remission maintenance treatment. Clinical Experimental Immunology 1979; 37: 259–266
  • Pearl E. R. Pre-B-cells in normal human bone marrow and in bone marrow from patients with leukemia in remission: persistent quantitative differences and possible expression of cell surface IgM in vitro. Blood 1983; 61: 464–468
  • Van den Doel L. J., Pieters R., Huismans D. R., Van Zantwijk C. H., Loonen A. H., Broekema G. J., DeWaal F. C., Veerman A. J.P. Immunological phenotype of lymphoid cells in regenerating bone marrow of children after treatment for acute lymphoblastic leukemia. European Journal of Haematology 1988; 41: 170–175
  • Self S. E., Morgan S., Grush O., La Via M. F. Significance of common acute lymphoblastic leukemia antigen (cALLA) positive cells in bone marrow of children off therapy in complete remission. Hematol. Oncology 1990; 8: 91–95
  • Duval M., Fenneteau O., Cave H., Gobillot C., Rohrlich P., Guidal C., Lescoeur B., Legac S., Schlegel N., Sterkers G., Vilmer E. Expansion of polyclonal B-cell precursors in bone marrow from children treated for acute lymphoblastic leukemia. Hematol. Cell Therapy 1997; 39: 139–147
  • Smedmyr B., Bengtsson M., Jakobsson A., Simonsson B., Oberg H., Totterman T. H. Regeneration of CALLA (CD 10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation. European Journal of Haematology 1991; 46: 146–151
  • Kobayashi S. D., Seki K., Suwa N., Koama C., Yamamoto T., Aiba K., Maruta A., Matsuzaki M., Fukawa H., Kanamori H. The transient appearance of small Mastoid cells in the marrow after bone marrow transplantation. American Journal of Clinical Pathology 1991; 96: 191–195
  • Kansas G. S., Dailey M. O. Expression of adhesion structures during B cell development in man. Journal of Immunology 1989; 142: 3058–3062
  • Ryan D. H., Nuccie B. L., Abboud C. N., Winslow J. M. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. Journal of Clinical Investigation 1991; 88: 995–1004
  • Miyake K., Medina K. L., Hayashi S. I., Ono S., Hamaoka T., Kincade P. W. Monoclonal anitbodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. Journal of Experimental Medicine 1990; 171: 477–188
  • Ryan D. H., Nuccie B. L., Abboud C. N. Inhibition of human bone marrow lymphoid progenitor colonies by antibodies to VLA integrins. Journal of Immunology 1992; 149: 3759–3764
  • Hynes R. O. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554
  • Hahn J. H., Kim M. K., Choi E. Y., Kim S. H., Sohn H. W., Ham D. I., Chung D. H., Kim T. J., Lee W. J., Park C. K., Ree H. J., Park S. H. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. Journal of Immunology 1997; 159: 2250–2258
  • Ryan D. H. Adherence of normal and neoplastic human B cell precursors to the bone marrow microenvironment. Blood Cells 1993; 19: 225–244
  • Dworzak M. N., Fritsch G., Fleischer C., Printz D., Fröschl G., Buchinger P., Mann G., Gadner H. CD99 (MIC2) expression in paediatric B-lineage leukaemia/lymphoma reflects maturation-associated patterns of normal B-lymphopoiesis. British Journal of Haematology 1999; 105: 690–695
  • Campana D., Coustan-Smith E., Behm F. G. The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplantation 1991; 8: 429–437
  • Roberts W. M., Estrov Z., Kitchingman G. R., Zipf T. The clinical significance of residual disease in childhood acute lymphoblastic leukemia as detected by polymerase chain reaction amplification of antigen-receptor gene sequences. Leukemia and Lymphoma 1996; 20: 181–197
  • Goulden N., Langlands K., Steward C., Katz F., Potter M., Chessells J., Oakhill A. PCR assessment of bone marrow status in “isolated” extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. British Journal of Haematology 1994; 87: 282–285
  • Ginaldi L., Matutes E., Farahat N., De-Martinis M., Monlla R., Catovsky D. Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry. British Journal of Haematology 1996; 93: 921–927

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.