146
Views
68
CrossRef citations to date
0
Altmetric
Original Article

The Role of Chemokines in Hodgkin's Disease

, &
Pages 363-371 | Received 23 Nov 1999, Published online: 01 Jul 2009

References

  • Teruya-Feldstein J., Jaffe E. S., Burd P. R., Kingraa D. W., Setsuda J. E., Tosato G. Differentia] chemokine expression in tissues involved by Hodgkin's disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood 1999; 93: 2463–2470
  • Rollins B. J. Chemokines. Blood 1997; 90: 909–928
  • Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392: 565–568
  • Luster A. D. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445
  • Gruss H. J., Herrmann F., Drexler H. G. Hodgkin's disease: a cytokine-producing tumor-a review. Crit Rev Oncog 1994; 5: 473–538
  • Gorschluter M, Bohlen H., Hasenclever D., Diehl V., Tesch H. Serum cytokine levels correlate with clinical parameters in Hodgkin's disease. Ann Oncol 1995; 6: 477–482
  • Foss H. D., Herbst H., Gottstein S., Demel G., Araujo I., Stein H. Interleukin-8 in Hodgkin's disease. Preferential expression by reactive cells and association with neutrophil density. Am J Pathol 1996; 148: 1229–1236
  • Gruss H. J., Pinto A., Duyster J., Poppema S., Herrmann F. Hodgkin's disease: a tumor with disturbed immunological pathways. Immunol Today 1997; 18: 156–163
  • Angiolillo A. L., Sgadari C., Taub D. D., Liao F., Farber J. M., Maheshwari S., Kleinman H. K., Reaman G. H., Tosato G. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 1995; 182: 155–162
  • Sgadari C, Angiolillo A. L., Cherney B. W., Pike S. E., Farber J. M., Koniaris L. G., Vanguri P., Burd P R., Sheikh N., Gupta G., Teruya-Feldstein J., Tosato G. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci USA 1996; 93: 13791–13796
  • Sgadari C, Farber J. M., Angiolillo A. L., Liao R., Teruya-Feldstein J., Burd P R., Yao L., Gupta G., Kanegane C., Tosato G. Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 1997; 89: 2635–2643
  • Teruya-Feldstein J., Jaffe E. S., Burd P. R., Kanegane H., Kingma D. W., Wilson W. H., Longo D. L., Tosato G. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood 1997; 90: 4099–4105
  • Setsuda J., Teruya-Feldstein J., Harris N. L., Ferry J. A., Sorbara L., Gupta G., Jaffe E. S., Tosato G. Interleukin- 18, interferon-gamma, IP-10, and Mig expression in Epstein- Barr virus-induced infectious mononucleosis and posttransplant lymphoproliferative disease. Am J Pathol 1999; 155: 257–265
  • Luciani M. G., Stoppacciaro A., Peri G., Mantovani A., Ruco L. P. The monocyte chemotactic protein a (MCP-1) and interleukin 8 (IL-8) in Hodgkin's disease and in solid tumours. Mol Pathol 1998; 51: 273–276
  • Van den Berg A., Visser L., Poppema S. High expression of the CC chemokine TARC in Reed-Steinberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma. Am J Pathol 1999; 154: 1685–1691
  • Kapp U., Yeh W. C., Patterson B., Elia A. J., Kagi D., Ho A., Hessel A., Tipsword M., Williams A., Mirtsos C., Itie A., Moyle M., Mak T. W. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 1999; 189: 1939–1946
  • Kingma D. W., Weiss W. B., Jaffe E. S., Kumar S., Frekko K., Raffeld M. Epstein-Barr virus latent membrane protein-1 oncogene deletions: correlations with malignancy in Epstein-Barr virus—associated lymphoproliferative disorders and malignant lymphomas. Blood 1996; 88: 242–251
  • Harris N. L., Jaffe E. S., Stein H., Banks P. M., Chan J. K., Cleary M. L., Delsol G., De Wolf-Peeters C., Falini B., Gatter K. C. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group [see comments]. Blood 1994; 84: 1361–1392
  • Harris N. L. Hodgkin's lymphomas: classification, diagnosis, and grading [In Process Citation]. Semin Hematol 1999; 36: 220–232
  • Jaffe E. S., Harris N. L., Diebold J., Muller-Hermelink H. K. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. A progress report. Am J Clin Pathol 1999; 111: S8–12
  • Jaffe E. S. Hematopathology: integration of morphologic features and biologic markers for diagnosis. Mod Pathol 1999; 12: 109–115
  • Rudiger T., Jaffe E. S., Delsol G., DeWolf-Peeters C., Gascoyne R. D., Georgii A., Harris N. L., Kadin M. E., MacLennan K. A., Poppema S., Stein H., Weiss L. E., Muller-Hermelink H. K. Workshop report on Hodgkin's disease and related diseases (“grey zone” lymphoma). Ann Oncol 1998; 9: S31–38
  • Hsu S. M., Hsu P. L. Lack of effect of colony-stimulating factors, interleukins, interferons, and tumor necrosis factor on the growth and differentiation of cultured Reed-Stemberg cells. Comparison with effects of phorbol ester and retinoic acid. Am J Pathol 1990; 136: 181–189
  • Merz H., Fliedner A., Orscheschek K., Binder T., Sebald W., Muller-Hermelink H. K., Feller A. C. Cytokine expression in T-cell lymphomas and Hodgkin's disease. Its possible implication in autocrine or paracrine production as a potential basis for neoplastic growth. Am J Pathol 1991; 139: 1173–1180
  • Loetscher M., Gerber B., Loetscher P., Jones S. A., Piali L., Clark-Lewis I., Baggiolini M., Moser B. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes [see comments]. J Exp Med 1996; 184: 963–969
  • Liao F., Rabin R. L., Yannelli J. R., Koniaris L. G., Vanguri P., Farber J. M. Human Mig chemokine: biochemical and functional characterization. J Exp Med 1995; 182: 1301–1314
  • Morente M. M., Piris M. A., Abraira V., Acevedo A., Aguilera B., Bellas C., Fraga M., Garcia-Del-Moral R., Gomez-Marcos F., Menarguez J., Oliva H., Sanchez-Beato M., Montalban C. Adverse clinical outcome in Hodgkin's disease is associated with loss of retinoblastoma protein expression, high K167 proliferation index, and absence of Epstein-Barr virus-latent membrane protein 1 expression. Blood 1997; 90: 2429–2436
  • Kaplan G., Luster A. D., Hancock G., Cohn Z. A. The expression of a gamma interferon-induced protein (IP-10) in delayed immune responses in human skin. J Exp Med 1987; 166: 1098–1108
  • Vanguri P., Farber J. M. IFN and virus-inducible expression of an immediate early gene, crg-2/IP-10, and a delayed gene, I-A alpha in astrocytes and microglia. J Immunol 1994; 152: 1411–1418
  • Haluska F. G., Brufsky A. M., Canellos G. P. The cellular biology of the Reed-Stemberg cell [see comments]. Blood 1994; 84: 1005–1019
  • Klein S., Jones D. B., Tesch H. In vitro differentiation of a Hodgkin's disease derived cell line. Hematol Oncol 1992; 10: 195–205
  • Rothenberger S., Bachmann E., Berger C., McQuain C., Odermatt B. F., Knecht H. Natural 30 base pair and 69 base pair deletion variants of the LMP1 oncogene do stimulate NF-kappaB-mediated transcription. Oncogene 1997; 14: 2123–2126
  • Devergne O., Hatzivassiliou E., Izumi K. M., Kaye K. M., Kleijnen M. F., Kieff E., Mosialos G. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996; 16: 7098–7108
  • Huen D. S., Henderson S. A., Croom-Carter D., Rowe M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 1995; 10: 549–560
  • Chemey B. W., Sgadari C., Kanegane C., Wang F., Tosato G. Expression of the Epstein-Barr virus protein LMP1 mediates tumor regression in vivo. Blood 1998; 91: 2491–2500
  • Dreschfeld J. Clinical lecture on acute Hodgkin's disease. British Medical Journal 1892; 1: 893
  • Samoszuk M., Nansen L. Detection of inter-leukin-5 messenger RNA in Reed-Stemberg cells of Hodgkin's disease with eosinophilia. Blood 1990; 75: 13–16
  • Rot A., Krieger M., Brunner T., Bischoff S. C., Schall T. J., Dahinden C. A. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992; 176: 1489–1495
  • Pinto A., Aldinucci D., Gloghini A., Zagonel V, Degan M., Improta S., Juzbasic S., Todesco M., Perm V., Gattei V., Herrmann E., Gruss H. J., Carbone A. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin's disease cell line. Blood 1996; 88: 3299–3305
  • Wardlaw A. J., Moqbel R., Cromwell O., Kay A. B. Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. J. Clin Invest 1986; 78: 1701–1706
  • Rothenberg M. E., Luster A. D., Leder P. Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci US A 1995; 92: 8960–8964
  • Rothenberg M. E., Ownbey R., Mehlhop P. D., Loiselle P. M., Van de Rijn M., Bonventre J. V., Oettgen H. C., Leder P., Luster A. D. Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Mol Med 1996; 2: 334–348
  • Garcia-Zepeda E. A., Rothenberg M. E., Ownbey R. T., Celestin J., Leder P., Luster A. D. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 1996; 2: 449–456
  • Chen J., Akyurek L. M., Fellstrom B., Hayry P., Paul L. C. Eotaxin and capping protein in experimental vasculopathy. Am J Pathol 1998; 153: 81–90
  • Uguccioni M., Loetscher P., Forssmann U., Dewald B., Li H., Lima S. H., Li Y., Kreider B., Garotta G., Thelen M., Baggiolini M. Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. J Exp Med 1996; 183: 2379–2384
  • Patel V. P., Kreider B. L., Li Y., Li H., Leung K., Salcedo T., Nardelli B., Pippalla V., Gentz S., Thotakura R., Parmelee D., Gentz R., Garotta G. Molecular and functional characterization of two novel human C-C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med 1997; 185: 1163–1172
  • Pardigol A., Forssmann U., Zucht H. D., Loetscher P., Schulz-Knappe P., Baggiolini M., Forssmann W. G., Magert H. J. HCC-2, a human chemokine: gene structure, expression pattern, and biological activity. Proc Natl Acad Sci USA 1998; 95: 6308–6313
  • Dunzendorfer S., Schratzberger P., Reinisch N., Kahler C. M., Wiedermann C. J. Secretoneurin, a novel neuropeptide, is a potent chemoattractant for human eosinophils. Blood 1998; 91: 1527–1532
  • Forssmann U., Uguccioni M., Loetscher P., Dahinden C. A., Langen H., Thelen M., Baggiolini M. Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J Exp Med 1997; 185: 2171–2176
  • Daugherty B. L., Siciliano S. J., DeMartino J. A., Malkowitz L., Sirotina A., Springer M. S. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 1996; 183: 2349–2354
  • Ponath P. D., Qin S., Post T. W., Wang J., Wu L., Gerard N. P., Newman W., Gerard C., Mackay C. R. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils [see comments]. J Exp Med 1996; 183: 2437–2448
  • Teixeira M. M., Wells T. N., Lukacs N. W., Proudfoot A. E., Kunkel S. L., Williams T. J., Hellewell P. G. Chemokine-induced eosinophil recruitment. Evidence of a role for endogenous eotaxin in an in vivo allergy model in mouse skin. J Clin Invest 1997; 100: 1657–1666
  • White J. R., Imburgia C., Dul E., Appelbaum E., O'Donnell K., O'Shannessy D. J., Brawner M., Fomwald J., Adamou J., Elshourbagy N. A., Kaiser K., Foley J. J., Schmidt D. B., Johanson K., Macphee C., Moores K., McNulty D., Scott G. F., Schleimer R. P., Sarau H. M. Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils. J Leukoc Biol 1997; 62: 667–675
  • Sallusto F., Mackay C. R., Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997; 277: 2005–2007
  • Gerber B. O., Zanni M. P., Uguccioni M., Loetscher M., Mackay C. R., Pichler W. J., Yawalkar N., Baggiolini M., Moser B. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co- localizing with eosinophils. Curr Biol 1997; 7: 836–843
  • Teruya-Feldstein J., Jaffe E. S., Berkowitz J. R., Burd P. R., Tosato G. Eotaxin-1, a Specific Chemoattractant for Eosinophils in Hodgkin's Disease. BLOOD 1997; 90: 388a
  • Jundt E, Anagnostopoulos I., Bommert K., Emmerich F, Muller G., Foss H.-D., Royer H.-D., Stein H., Dorken B. Hodgkin/Reed-Sternberg Cells Induce Fibroblasts to Secrete Eotaxin, a Potent Chemoattractant for T Cells and Eosinophils. BLOOD 1999; 94: 2065–2071
  • Enblad G., Sundstrom C., Glimelius B. Infiltration of eosinophils in Hodgkin's disease involved lymph nodes predicts prognosis. Hematol Oncol 1993; 11: 187–193
  • Toth J., Dworak O., Sugar J. Eosinophil predominance in Hodgkin's disease. Z. Krebsforsch Klin Onkol Cancer Res Clin Oncol 1977; 89: 107–111
  • Von Wasielewski R., Seth S., Franklin J., Fischer R., Hubner K., Hansmann M., Diehl V., Georgii A. Tissue Eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin's disease, allowing for known prognostic factors. Blood 1999, In press
  • Rodenburg R. J., Brinkhuis R. F., Peek R., Westphal J. R., Van Den Hoogen F. H., Van Venrooij W. J., Van de Putte L. B. Expression of macrophage-derived chemokine (MDC) mRNA in macrophages is enhanced by inter-leukin-lbeta, tumor necrosis factor alpha, and lipopolysac-charide. J Leukoc Biol 1998; 63: 606–611
  • Godiska R., Chantry D., Raport C. J., Sozzani S., Allavena P., Leviten D., Mantovani A., Gray P. W. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 1997; 185: 1595–1604
  • Ghia P., Schaniel C., Rolink A. G., Nadler L. M., Cardoso A. A. Human macrophage-derived chemokine (MDC) is strongly expressed following activation of both normal and malignant precursor and mature B cells. Curr Top Microbiol Immunol 1999; 246: 103–110
  • Andrew D. P., Chang M. S., McNinch J., Wathen S. T., Rihanek M., Tseng J., Spellberg J. P., Elias C. G., 3rd. STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13. J Immunol 1998; 161: 5027–5038
  • Doucet C., Brouty-Boye D., Pottin-Clemenceau C., Canonica G. W., Jasmin C., Azzarone B. Inter-leukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest 1998; 101: 2129–2139
  • Angiolillo A. L., Sgadari C., Sheikh N., Reaman G. H., Tosato G. Regression of experimental human leuke-mias and solid tumors induced by Epstein-Barr virus-immortalized B cells. Leulc Lymphoma 1995; 19: 267–276
  • Rothenberg M. E., MacLean J. A., Pearlman E., Luster A. D., Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen- induced tissue eosinophilia. J Exp Med 1997; 185: 785–790
  • Rothenberg M. E. Eosinophilia. N Engl J Med 1998; 338: 1592–1600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.