102
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Resveratrol-from the Bottle to the Bedside?

Pages 491-498 | Published online: 01 Jul 2009

References

  • Gorham J. The stilbenoids. Progr Phytochem 1980; 6: 203–52
  • Soleas G. J., Diamandis E.P., Goldberg D. M. Resveratrol: a molecule whose time has come? And gone?. Clin Biochem 1997; 30: 91–113
  • Nonomura S., Kanagawa H., Makimoto A. Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-jo-kon. (Polygonum cuspidatum SIEB et ZUCC). Yahugaku Zasshi 1963; 83: 988–90
  • Langcake P., Pryce R. J. A new class of phytoalexins. Experientia 1977; 33: 151–2
  • Langcake P., Cornford C.A., Pryce R. J. Identification of pterostilbene as a phytoalexin from. Vitis ninifera leaves. Phytochemistry 1979; 18: 1025–27
  • Langcake P., McCarthy W. V. The relationship of resveratrol production to infection of grapevine leaves by. Botrytis cinera. Vitis 1979; 18: 244–53
  • Siemann E.H., Creasy L. L. Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic 1992; 43: 49–52
  • Constant J. Alcohol, ischemic heart disease, and the French paradox. Coron Artery Dis 1997; 8: 645–9
  • Sato M., Ray P. S., Maulik G., Maulik N., Engelman R. M., Bertelli A. A., Bertelli A., Das D. K. Myocardial protection with red wine extract [In Process Citation). J Cardiovasc Pharmacol 2000; 35: 263–8
  • Bertelli A. A., Giovannini L., Giannessi D., Migliori M., Bernini W., Fregoni M., Bertelli A. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 1995; 17: 1–3
  • Chanvitayapongs S., Draczynska-Lusiak B., Sun A. Y. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport 1997; 8: 1499–502
  • Fremont L. Biological effects of resveratrol. Life Sci 2000; 66: 663–73
  • Pace-Asciak C. R., Hahn S., Diamandis E. P., Soleas G., Goldberg D. M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 1995; 235: 207–19
  • Rotondo S., Rajtar G., Manarini S., Celardo A., Rotillo D., de Gaetano G., Evangelista V., Cerletti C. Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. Br J Pharmacol. 1998; 123: 1691–9
  • Zou J. G., Huang Y. Z., Chen Q., Wei E. H., Hsieh T.C., Wu J. M. Resveratrol inhibits copper ion-induced and azo compound-initiated oxidative modification of human low density lipoprotein. Biochem Mol Biol Int 1999; 47: 1089–96
  • Wadsworth T.L., Koop D. R. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem Pharmacol 1999; 57: 941–9
  • Tsai S. H., Lin-Shiau S.Y., Lin J. K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 1999; 126: 673–80
  • Hsieh T. C., Juan G., Darzynkiewicz Z., Wu J. M. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAFl/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 1999; 59: 2596–601
  • Jang M., Cai L., Udeani G. O., Slowing K. V., Thomas C. F., Beecher C. W., Fong H. H., Farnsworth N. R., Kinghorn A. D., Mehta R. G., Moon R.C., Pezzuto J. M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275: 218–20
  • Mgbonyebi O. P., Russo J., Russo I. H. Antiproliferative effect of synthetic resveratrol on human breast epithelial cells. Int Oncol 1998; 12: 865–9
  • Hsieh T. C., Burfeind P., Laud K., Backer J. M., Traganos F., Darzynkiewicz Z., Wu J. M. Cell cycle effects and control of gene expression by resveratrol in human breast carcinoma cell lines with different metastatic potentials. Int J Oncol 1999; 15: 245–52
  • Lu R., Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol 1999; 179: 297–304
  • Hsieh T.C., Wu J. M. Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 1999; 249: 109–15
  • Gehm B. D., McAndrews J. M., Chien P.Y., Jameson J. L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 1997; 94: 14138–43
  • Clifford A. J., Ebeler S. E., Ebeler J. D., Bills N. D., Hinrichs S. H., Teissedre P.L., Waterhouse A. L. Delayed tumor onset in transgenic mice fed an amino acid-based diet supplemented with red wine solids. Am J Clin Nutr 1996; 64: 748–56
  • Carbo N., Costelli P., Baccino P. M., Lopez-Soriano F.J., Argues J. M. Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. Biochem Biophys Res Commun 1999; 254: 739–43
  • Alnemri E. S. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem 1997; 64: 33–42
  • Alnemri E. S., Livingston D. J., Nicholson D. W., Salvesen G., Thornberry N. A., Wong W.W., Yuan J. Human ICE/CED-3 protease nomenclature [letter]. Cell 1996; 87: 171
  • Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 1990; 2: 275–80
  • Muller M., Strand S., Hug H., Heinemann E. M., Walczak H., Hofmann W. J., Stremmel W., Krammer P.H., Galle P. R. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 1997; 99: 403–13
  • Clement M. V., Hirpara J. L., Chawdhury S.H., Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 1998; 92: 996–1002
  • Huang C., Ma W. Y., Goranson A., Dong Z. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 1999; 20: 237–42
  • Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501
  • Cohen J. J. Programmed cell death in the immune system. Adv. Immunol. 1991; 50: 55–85
  • Dhein J., Walczak H., Baumler C., Debatin K.-M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1 (Fas/CD95). Nature 1995; 373: 438–440
  • Kagi D., Vignaux F., Ledermann B., Burki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perform pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530
  • Ogasawara J., Watanabe-Fukunaga R., Adachi M., Matsuzawa A., Kasugai T., Kltamura Y., Itoh N., Suda T., Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–809
  • Owen-Schaub L. B., Meterissian S., Ford R. J. Fas/APO-1 expression and function on malignant cells of hematologic and nonhematologic origin. J. Immunotherapy 1993; 14: 234–241
  • Fulda S., Friesen C., Los M., Scaffidi C., Mier W., Benedict M., Nunez G., Krammer P. H., Peter M.E., Debatin K. M. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 1997; 57: 4956–64
  • Friesen C., Fulda S., Debatin K. M. Cytotoxic drugs and the CD95 pathway. Leukemia 1999; 13: 1854–8
  • Muller M., Scaffidi C. A., Galle P. R., Stremmel W., Krammer P. H. The role of p53 and the CD95 (APO-1/Fas) death system in chemotherapy-induced apoptosis. Eur Cytokine Netw 1998; 9: 685–6
  • Medema J. P., Scaffidi C., Kischkel F. C., Shevchenko A., Mann M., Krammer P.H., Peter M. E. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16: 2794–804
  • Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K. J., Debatin K. M., Krammer P.H., Peter M. E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–87
  • Pervaiz S., Seyed M. A., Hirpara J. L., Clement M.V., Loh K. W. Purified photoproducts of merocyanine 540 trigger cytochrome C release and caspase 8-dependent apoptosis in human leukemia and melanoma cells. Blood 1999; 93: 4096–108
  • Saleh A., Srinivasula S. M., Acharya S., Fishel R., Alnemri E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 214: 17941–5
  • Zou H., Li Y., Liu X., Wang X. An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549–56
  • Hu Y., Benedict M. A., Ding L., Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 1999; 18: 3586–95
  • Marchetti P., Castedo M., Susin S. A., Zamzami N., Hirsch T., Macho A., Haeffner A., Hirsch F., Geuskens M., Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155–60
  • Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Remy R., Xie Z., Reed J.C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 1998; 187: 1261–1271
  • Marzo I., Brenner C., Kroemer G. The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother 1998; 52: 248–51
  • Scarlett J.L., Murphy M. P. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett 1997; 418: 282–6
  • Susin S. A., Zamzami N., Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1998; 1366: 151–65
  • Yang J.C., Cortopassi G. A. Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med 1998; 24: 624–31
  • Pervaiz S., Ramah'ngam J.K., Hirpara J.L., Clement M. Superoxide anion inhibits drug-induced tumor cell death. FEBS Febs Lett 1999; 459: 343–8
  • Clement M.V., Pervaiz S. Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res 1999; 30: 247–52
  • Oberley T. D., Schultz J. L., Li N., Oberley L. W. Antioxidant enzyme levels as a function of growth state in cell culture. Free Rad. Biol. Med. 1995; 19: 53–65
  • Oberley T.D., Oberley L. W. Antioxidant enzyme levels in cancer. Histol. Histopathol. 1997; 12: 525–535
  • Hirpara J. L., Seyed M. A., Loh K. W., Dong H., Kini R.M., Pervaiz S. Induction of mitochondrial permeability transition and cytochrome C release in the absence of caspase activation is insufficient for effective apoptosis in human leukemia cells. Blood 2000; 95: 1773–1780

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.