49
Views
23
CrossRef citations to date
0
Altmetric
Review Article

CD95 Antigen Mutations in Hematopoietic Malignancies

, , , , , & show all
Pages 835-846 | Published online: 01 Jul 2009

References

  • Lynch D H, Ramsdell F, Alderson M R. Fas and fasL in the homeostatic regulation of immune responses. Imm Today 1995; 16: 569–574
  • Daniel F T, Krammer P H. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J Immunol 1994; 152: 5624–5632
  • Kobayashi N, Hamamoto Y, Yamamoto N, Ishii A, Yonehara M, Yonehara S. Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication. Proc Natl Acad Sci USA 1990; 87: 9620–9624
  • Watanabe-Fukunaga R, Brannan C I, Itoh N, Yonehara S, Copeland N G, Jenkins N A, Nagata S. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 1992; 148: 1274–1279
  • Falk M H, Trauth B C, Debatin K-M, Klas C, Gregory C D, Rickinson A B, Calendar A, Lenoir G M, Ellwart J W, Krammer P H, Bomkamm G W. Expression of the APO-1 antigen in Burkitt Lymphoma cell lines correlates with a shift towards a lymphoblastoid phenotype. Blood 1992; 79: 3300–3306
  • Itoh N, Nagata S. A novel protein domain required for apoptosis: Mutational analysis of human Fas antigen. J Biol Chem 1993; 268: 10932–10937
  • Kischkel F C, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer P H, Peter M E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588
  • Kataoka S, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich C J, Tschopp I. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irraadiation. J Immunol 1998; 1661(15)3936–3942
  • Scaffidi C, Schneider P, Krammer P H, Peter M E. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 1999; 274(3)1541–1548
  • Yang X, Khosravi-Far R, Chang H Y, Baltimore D. Daxx, a novel Fas-binding protein that activates INK and apoptosis. Cell 1997; 89: 1067–1076
  • Sato T, We S, Kitada S, Reed J C. FAP-1: A protein tyrosine phosphatase that associates with Fas. Science 1995; 268: 411–415
  • Yanagisawa I, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoli T, Sawa E, Nishitoba T, Kamishohara M, Kobayashi E, Kataoka S, Sato T. The molecular interaction of Fas and FAP-1: A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. J Biol Chem 1997; 272: 8539–8545
  • Komada Y, Inaba H, Zhou Y-W, Zhang X-L, Tanaka S, Azuma E, Sakurai M. mRNA expression of Fas receptor (CD95)-associated proteins (Fas-associated phosphatase-1/FAP-1, Fas-associating protein with death domain/FADD, and receptor-interacting protein/RIP) in human leukaemia/lymphoma cell lines. Br J Haematology 1997; 99: 325–330
  • Levy-Strumpf N, Kimchi A. Death associated proteins (DAPs): from gene identification to the analysis of their apoptotic and tumor suppressive functions. Oncogene 1998; 17: 3331–3340
  • Takahashi T, Tanaka M, Brannan C I, Jenkins N A, Copeland N G, Suda T, Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994; 76: 969–976
  • Watanabe-Fukunaga R, Brannan C I, Copeland N G, Jenkins N A, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Wu J, Zhou T, Zhang J, He J, Gause W C, Mountz J D. Correction of accelerated autoimmune disease by early replacement of the mutated Ipr gene with the normal Fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice. Proc Natl Acad Sci USA 1994; 91: 2344–2348
  • Rieux-Laucat F, Le Deist F, Hivroz C, Roberts I AG, Debatin K-M, Fischer A, de Villarty J P. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–1349
  • Fisher G H, Rosenberg F J, Straus S E, Dale J K, Middleton L A, Lin A Y, Strober W, Lenardo M J, Puck J M. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–946
  • Bettinardi A, Brugnoni D, Quiros-Rolden E, Malagoli A, La Grutta S, Correra A, Notarangelo D. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: A molecular and immunological analysis. Blood 1997; 89: 902–909
  • Robertson M J, Manley T J, Pichert G, Cameron C, Cochran K J, Levine H, Ritz J. Functional consequences of APO-1/Fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk and Lymph 1995; 17: 51–61
  • Strasser A, Huang D CS, Vaux D L. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochim Biophys Acta 1997; 1333: F151–F178
  • Hallek M, Bergsagel P L, Anderson K C. Multiple myeloma: Increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21
  • Westendorf J J, Lammert J M, Jelinek D F. Expression and function of Fas (APO-1/CD95) in patient myeloma cells and myeloma cell lines. Blood 1995; 12: 3466–3576
  • Shima Y, Nishimoto N, Ogata A, Fujii Y, Yoshizaki K, Kishimoto T. Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood 1995; 3: 757–764
  • Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J, Vescio R, Rettig M, Berenson J, Krajewski S, Reed J C, Lichtenstein A. Bcl-X expression in multiple myeloma: Possible indicator of chemoresistance. Cancer Research 1998; 58: 256–262
  • Catlett-Falcone R, Landowski T H, Oshiro M M, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna J L, Nunez G, Dalton W S, Jove R. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115
  • Landowski T H, Qu N, Buyuksal I, Painter J S, Dalton W S. Mutations in the Fas antigen of multiple myeloma patients. Blood 1997; 90: 4266–4270
  • Fiucci G, Ruberti G. Detection of polymorphisms within the Fas cDNA gene sequence by GC-clamp denaturing gradient gel electrophoresis. Immunogen 1995; 39: 437–439
  • DeVita V.T. Jr, Canellos G.P. The lymphomas. Semin Hematol 1999 Oct; 36 (4 Suppl7):84-94 1999; 36(4):84-94.
  • Dirks W, Schone S, Uphoff C, Quentmeier H, Pradella S, Drexler H G. Expression and function of CD95 (Fas/APO-1) in leukaemia-lymphoma toumor lines. Br J Haematology 1997; 96: 584–593
  • Xerri L, Devilard E, Hassoun J, Haddad P, Birg F. Malignant and reactive cells from human lymphomas frequently express Fas ligand but display a different sensitivity to Fas-mediated apoptosis. Leukemia 2000; 11(11)1868–1877
  • Plumas J, Jacob M-C, Chaperot L, Molens J-P, Sotto J-J, Bensa J-C. Tumor B cells from non-Hodgkin's lymphoma are resistant to CD95 (Fas/APO-1)-mediated apoptosis. Blood 1998; 91: 2875–2885
  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Samashima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–243
  • Cheng J, Liu C, Koopman W J, Mountz J D. Characterization of human Fas gene: Exon/intron organization and promoter region. J Immunol 1995; 154: 1239–1245
  • Xerri L, Carbuccia N, Parc P, Birg F. Search for rearrangements and/or allelic loss of the fas/APO-1 gene in 101 human lymphomas. Am J Clin Pathol 1995; 104: 424–430
  • Daniel P T, Oettinger U, Mapara M Y, Bommert K, Bargou R, Dorken B. Activation and activation-induced death of human tonsillar B cells and Burkitt lymphoma cells: lack of CD95 (Fas/APO-1) ligand expression and function. Eur J Immunol 1997; 27: 1029–1034
  • Mullauer L, Mosberger I, Chott A. Fas ligand expression in nodal non-Hodgkin's lymphomas. Mod Pathol 1998; 11: 369–375
  • Mandik L, Nguyen K-AT, Erikson J. Fas receptor expression on B-lineage cells. Eur J Immunol 1995; 25: 3148–3154
  • Bertoni F, Conconi A, Luminari S, Realini C, Roggero E, Baldini L, Carobbio S, Cavalli F, Neri A, Zucca E. Lack of CD95/Fas gene somatic mutations in extranodal, nodal and splenic marginal zone B cell lymphomas. Leukemia 2000; 14: 446–448
  • Gronbaek K, Straten P T, Ralfkiaer E, Ahrenkiel V, Andersen M K, Hansen M E, Zeuthen J, Hou-Jensen K, Guldberg P. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92(9)3018–3024
  • Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M. Mutation of CD95 (Fas/Apo-1) gene in adult T-cell leukemia cells. Blood 1998; 91: 3935–3942
  • Beltinger C, Kurz E, Bonier T, Schrappe M, Ludwig W-D, Debatin K-M. CD95 (APO-1/Fas) mutations in childhood T-lineage acute lymhoblastic leukemia. Blood 1998; 91: 3943–3951
  • Eischen C M, Kottke T J, Martins LM, Basi G S, Tung J S, Earnshaw W C, Leibson P J, Kaufmann S H. Comparison of apoptosis in wild-type and Fas-resistant cells: Chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood 1997; 90: 935–943
  • Villunger A, Egle A, Kos M, Hartmann B L, Geley S, Kofler R, Greil R. Drug-induced apoptosis is associated with enhanced Fas (APO-1/CD95) ligand expression but occurs independently of Fas (APO-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Research 1997; 57: 3331–3334
  • Landowski T H, Shain K H, Oshiro M M, Buyuksal I, Painter J S, Dalton W S. Myeloma cells selected for resistance to CD95-mediated apoptosis are not cross-resistant to cytotoxic drugs: Evidence for independent mechanisms of caspase activation. Blood 1999; 94: 265–274
  • Shain K H, Landowski T H, Buyuksal I, Cantor A B, Dalton W S. Clonal variability in CD95 expression is the major determinant in Fas-mediated, but not chemotherapy mediated apoptosis in the RPMI 8226 multiple myeloma cell line. Leukemia 2000; 14: 830–840
  • Lamy T, Loughran TP, Jr. Current concepts: large granular lymphocyte leukemia. Blood Rev 1999; 13(4)230–240
  • Lamy T, Liu J H, Landowski T H, Dalton W S, Loughran TP, Jr. Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3(+) large granular lymphocyte leukemia. Blood 1998; 92: 4771–4777
  • Liu J H, Wei S, Lamy T, Epling-Burnette P K, Starkebaum G, Djeu J Y, Loughran TP, Jr. Chronic neutropenia mediated by fas ligand. Blood 2000; 95: 3219–3233
  • Cascino I, Fiucci G, Papoff G, Ruberti G. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 1995; 154: 2706–2713
  • Natoli G, Ianni A, Costanzo A, De Petrillo G II, Chirillo P, Balsano C, Levrero M. Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene 1995; 11: 1157–1164
  • Cheng J, Zhou T, Liu C, Shapiro J P, Brauer M J, Kiefer M C, Barr P J, Mountz J D. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1995; 263: 1759–1762
  • Inaba H, Komada Y, Li Q-S, Zhang X-L, Tanaka S, Azuma E, Yamamoto H, Sakurai M. mRNA expression of variant Fas molecules in acute Leukemia cells. Am J Hematology 1999; 62: 150–159
  • Muschen M, Warskulat U, Beckmann M W. Defining CD95 as a tumor suppressor gene. J Mol Med 2000; 78: 312–325
  • Landowski T H, Gleason-Guzman M C, Dalton W S. Selection for drug resistance results in resistance to Fas mediated apoptosis. Blood 1997; 89: 1180–1187
  • Schneider T J, Grillot D AM, Foote L C, Nvmez G E, Rothstein T L. Bel-XL protects primary B cells against Fas-mediated apoptosis. J Immunol 1997; 159: 4834–4839
  • Owen-Schaub L B, Zhang W, Cusack J C, Angelo L S, Santee S M, Fujiwara T, Roth J A, Deisseroth A B, Zhang W-W, Kruzel E, Radinsky R. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995; 15: 3032–3040
  • Fenton R G, Hixon J A, Wright P A, Brooks A D, Sayers T J. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras. Cancer Research 1998; 58: 3391–3400
  • Hughes S J, Nambu Y, Soldes O S, Hamstra D, Rehemtulla A, Iannettoni M D, Orringer M B, Beer D G. Fas/APO-1 (CD95) is not translocated to the cell membrane in esophageal adenocarcinoma. Cancer Research 1997; 57: 5571–5578
  • Bennett M, Macdonald K, Chan S W, Luzio J P, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998; 282: 290–293
  • Rathmell J C, Townsend S E, Xu J C, Flavell R A, Goodnow C C. Expansion or elimination of B cells in vivo: Dual roles for CD40-and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 1996; 87: 319–329
  • Lagresle C, Bella C, Daniel F T, Krammer P H, Defrance T. Regulation of germinal center B cell differentiation: Role of the human APO-1/Fas (CD95) molecule. J Immunol 1995; 154: 5746–5756
  • Garrone P, Neidhardt E-M, Garcia E, Galibert L, van Kooten C, Banchereau J. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 1995; 182: 1265–1273
  • Wang J, Taniuchi I, Maekawa Y, Howard M, Cooper M D, Watanabe T. Expression and function of Fas antigen on activated murine B cells. Eur J Immunol 1996; 26: 92–96
  • Epling-Burnette PK, Liu J H, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang J M, Yang-Yen H F, Karras J, Jove R, Loughran TP, Jr. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest. 2001; 107: 351–362

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.