80
Views
17
CrossRef citations to date
0
Altmetric
Review Article

BCR-ABL Fusion Peptides and Cytotoxic T Cells in Chronic Myeloid Leukaemia

&
Pages 871-880 | Published online: 01 Jul 2009

References

  • Nowell P C, Hungerford D A. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497–1501
  • Rowley J D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 1973; 243: 290–293
  • Groffen J, Stephenson J R, Heisterkamp N, de Klein A, Bartram C R, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36: 93–99
  • Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organisation of the bcr gene and its role in the Ph1 translocation. Nature 1984; 315: 758–759
  • Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Resta D, Capdeville R, Druker B. Phase II study of STI 571, a tyrosine kinase inhibitor in patients (pts) with resistant or refractory Philadelphia chromosome positive chronic myeloid leukemia. Blood 2000; 96(Supplement 1)470a, (abstract)
  • Talpaz M, Silver R T, Druker B, Paquette R, Goldman J M, Reese S F, Capdeville R. A phase II study of STI 571 in adult patients with Philadelphia chromosome positive chronic myeloid leukaemia in accelerated phase. Blood 2000; 96(Supplement 1)469a, (abstract)
  • Marmont A M, Horowitz M M, Gale R P, Sobocinski K, Ash R C, van Bekkum D W, Champlin R E, Dicke K A, Goldman J M, Good R A, Herzig R H, Hong R, Masaoka T, Rimm A A, Ringdén O, Speck B, Weiner R S, Bortin M M. T-cell depletion of HLA-identical transplants in leukemia. Blood 1991; 78: 2120–2130
  • Kolb H-J, Schattenberg A, Goldman J M, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D, van Rhee F, Mittermueller J, de Witte T, Holler E, Ansari H. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050
  • Kurzrock R, Gutterman J U, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. New England Journal of Medicine 1988; 319: 990–998
  • Melo J V. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996b; 88: 2375–2384
  • Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian H M. The biology of chronic myeloid leukemia. New England Journal of Medicine 1999; 341: 164–172
  • Bernards A, Rubin C M, Westbrook C A, Paskind M, Baltimore D. The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukaemia. Molecular and Cell Biology 1987; 7: 3231–3236
  • Shtivelman E, Lifshitz B, Gale R P, Roe B A, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 1986; 47: 277–284
  • Shepherd P, Suffolk R, Halsey J, Allan N. Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: No correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. British Journal of Haematology 1995; 89: 546–554
  • Shtalrid M, Talpaz M, Kurzrock R, Kantarjian H, Trujillo J, Gutterman J, Yoffe G, Buck M. Analysis of breakpoints within the bcr gene and their correlation with the clinical course of Philadelphia-positive chronic myelogenous leukaemia. Blood 1988; 72: 485–491
  • Dreazen O, Berman M, Gale R P. Molecular abnormalities of bcr and c-abl in chronic myelogenous leukaemia associated with a long chronic phase. Blood 1988; 71: 797–799
  • Jaubert J, Martial P, Dowding C, Ifrah N, Goldman J M. The position of the M-BCR breakpoint does not predict the duration of chronic phase or survival in chronic myeloid leukaemia. British Journal of Haematology 1990; 74: 30–35
  • Tien H F, Wang C H, Chen Y C, Shen M C, Wu H S, Lee F Y, Chuang S M, Liu C H. Chromosome and bcr rearrangement in chronic myelogenous leukaemia and their correlation with clinical states and prognosis of the disease. British Journal of Haematology 1990; 75: 469–475
  • Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B. Neutrophilic chronic myeloid leukemia: a distinct disease with a specific molecular marker. Blood 1996; 88: 2410–2414, [Erratum, Blood 1997; 89:4244.].
  • Hochhaus A, Reiter A, Skladny H, Melo J V, Sick C, Berger U, Guo J Q, Arlinghaus R B, Hehlmann R, Goldman J M, Cross N CP. A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome negative chronic myelogenous leukemia. Blood 1996; 88: 2236–2240
  • Sawyers C L. The bcr-abl gene in chronic myelogenous leukemia. Cancer Surveys 1992; 15: 37–51
  • Verfaillie C M. Chronic myelogenous leukemia: from pathogenesis to therapy. Journal of Hematotherapy 1999; 8: 3–13
  • Gordon M Y, Goldman J M. Cellular and molecular mechanisms in chronic myeloid leukaemia: biology and treatment. British Journal of Haematology 1996; 95: 10–20
  • Melo J V. The molecular biology of chronic myeloid leukemia. Leukemia 1996a; 10: 751–756
  • Lugo T G, Pendergast A M, Muller A J, Witte O N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082
  • Rock K L. A new foreign policy: MHC Class I molecules monitor the outside world. Immunology Today 1996; 17: 131–137
  • Sorensen P H, Triche T J. Gene fusions encoding chimaeric transcription factors in solid tumours. Seminars in Cancer Biology 1996; 7: 3–14
  • Coulie P G, van Pel A. Defined antigens recognized by T lymphocytes on human tumours. Current Opinion in Oncology 1993; 5: 1043–1048
  • Bocchia M, Wentworth P A, Southwood S, Sidney J, McGraw K, Scheinberg D A, Sette A. Specific binding of leukemia oncogene fusion protein peptides to HLA Class I molecules. Blood 1995; 85: 2680–2684
  • Greco G, Fruci D, Accapezzato D, Barnaba V, Nisini R, Alimena G, Montefusco E, Vigneti E, Butler R, Tanigaki N, Tosi R. Two bcr-abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia 1996; 10: 693–699
  • Buzyn A, Ostankovitch M, Zerbib A, Kemula M, Connan F, Varet B, Guillet J G, Choppin J. Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes. European Journal of Immunology 1997; 27: 2066–2072
  • Berke Z, Andersen M H, Pedersen M, Fugger L, Zeuthen J, Haurum J S. Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules. Leukemia 2000; 14: 419–426
  • Leeksma O C, Kessler J H, Huijbers I J, Ten Bosch G J, Melief C J. BCR-ABL directed immunotherapy: a virtual reality?. Leukaemia and Lymphoma 2000; 38: 175–181
  • Pinilla-Ibarz J, Korontsvit T, Roberts W, Shaed S, Cathcart K, Scheinberg D A. Synthetic analogue BCR-ABL fusion peptides improve Class I immunogenicity to the native protein. Blood 2000a; 96(Supplement 1)p1510a, (abstract)
  • Yotnda P, Firat P, Garcia-Pons F, Garcia Z, Gourru G, Vernant J P, Lemonnier F A, Leblond V, Langlade-Demoyen P. Cytotoxic T-cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. Journal of Clinical Investigation 1998; 101: 2290–2296
  • Cullis J O, Barrett A J, Goldman J M, Lechler R I. Binding of BCR/ABL junctional peptides to major histocompatibility complex (MHC) class I molecules: studies in antigen-processing defective cell lines. Leukemia 1994; 8: 165–170
  • MacKenzie E, Stewart E, Birnie G D. ABL-BCR mRNAs transcribed from chromosome 9q+ in Philadelphia-chromosome-positive chronic myeloid leukaemia. Leukemia 1993; 7: 702–706
  • Melo J V, Gordon D E, Cross N CP, Goldman J M. The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 1993; 81: 158–165
  • Garicochea B, Chase A, Lazaridou A, Goldman J M. T lymphocytes in chronic myelogenous leukaemia (CML): No evidence of the BCR/ABL fusion gene detected by fluorescence in situ hybridisation in 14 patients. Leukemia 1994; 8: 1197–1201
  • Cho E Y, Heo D S, Seol J G, Seo E J, Chi H S, Kim E S, Lee Y Y, Kim B K, Kim N K. Ontogeny of natural killer cells and T cells by analysis of BCR-ABL rearrangement from patients with chronic myelogenous leukaemia. British Journal of Haematology 2000; 111: 216–222
  • Tanaka Y, Takahashi T, Nieda M, Masuda S, Kashiwase K, Ogawa S, Chiba S, Juji T, Hirai H. Generation of HLA-DRBl*1501-restricted p190 minor bcr-abl (ela2)-specific CD4+ T lymphocytes. British Journal of Haematology 2000; 109: 435–437
  • van Danderen J, Hermans A, Meeuwsen T, Troelstra C, Zegers N, Boersma W, Grosveld G, Van Ewijk W. Antibody recognition of the tumour-specific bcr-abl joining region in chronic myeloid leukaemia. Journal of Experimental Medicine 1989; 169: 87–98
  • Chen W, Peace D J, Rovira D K, You S G, Cheever M A. T-cell immunity to the joining region of p210 BCR-ABL protein. Proceeding of the National Academy of Science of the USA. 1992. 89: 1468–1472
  • Barrett A J, Jiang Y Z. Immune responses to chronic myeloid leukaemia. Bone Marrow Transplantation 1992; 9: 305–311
  • Oettel K R, Wesly O H, Albertini M R, Hank J A, Diopolis O, Sosman J A, Voelkerding K, Wu S-Q, Clark S S, Sondel P M. Allogeneic T cell clones able to selectively destroy Philadelphia chromosome-bearing (Ph1+) human leukaemia lines can also recognize Ph1- cells from the same patient. Blood 1994; 83: 3390–3402
  • Datta A R, Barrett A J, Jiang Y Z, Guimaraes A, Mavroudis D A, van Rhee F, Gordon A A, Madrigal A. Distinct T cell populations distinguish chronic myeloid leukaemia cells from lymphocytes in the same individual: a model for separating GVHD from GVL reactions. Bone Marrow Transplantation 1994; 14: 517–524
  • Dermime S, Mavroudis D, Jiang Y-Z, Hensel N, Molldrem J, Barrett A J. Immune escape from a graft-versus-leukemia effect may play a role in the relapse of myeloid leukemias following allogeneic bone marrow transplantation. Bone Marrow Transplantation 1997; 19: 989–999
  • Bocchia M, Korontsvit T, Xu Q, MacKinnon S, Yang S Y, Sette A, Scheinberg D A. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 1996; 87: 3587–3592
  • Osman Y, Takahashi M, Zheng Z, Koike T, Toba K, Liu A, Furukawa T, Aoki S, Aizawa Y. Generation of bcr-abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients. Leukemia 1999; 13: 166–174
  • Nieda M, Nicol A, Kikuchi A, Kashiwase K, Taylor K, Suzuki K, Takadoro K, Juji T. Dendritic cells stimulate the expansion of bcr-abl specific CD8+ T cells with cytotoxic activity against leukaemic cells from patients with chronic myeloid leukaemia. Blood 1998; 91: 977–983
  • ten Bosch G J, Kessler J H, Joosten A M, Bres-Vloemans A A, Geluk A, Godthelp B C, van Bergen J, Melief C J, Leeksma O C. A BCR-ABL oncoprotein p210b2a2 fusion region sequence is recognized by HLA-DR2a restricted cytotoxic T lymphocytes and presented by HLA-DR matched cells transfected with an Ii(b2a2) construct. Blood 1999; 94: 1038–1045
  • Clarke S R. The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity. Journal of Leukocyte Biology 2000; 67: 607–614
  • Barrett J, Guimaraes A, Cullis J, Goldman J M. Immunological characterisation of the tumour specific bcr/abl junction of Philadelphia chromosome positive chronic myeloid leukaemia. Stem Cells 11: Supplement 1993; 3: 104–108
  • Macintyre A R, Christmas S E, Clark R E. The influence of class II HLA type on the lymphoproliferative response of normal donors to a bcr-abl fusion peptide. Experimental Hematology 1996; 24: 1307–1311
  • Mannering S I, McKenzie J L, Feamley D B, Hart D NJ. HLA-DR1 restricted bcr-abl (b3a2) specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 1997; 90: 290–297
  • Yasukawa M, Ohminami H, Kaneko S, Yakushijin Y, Nishimura Y, Inokuchi K, Miyakuni T, Nakao S, Kishi K, Kubonishi I, Dan K, Fujita S. CD4+ cytotoxic T-cell clones specific for bcr-abl b3a2 fusion peptide augment colony formation by chronic myelogenous leukemia cells in a b3a2-specific and HLA-DR restricted manner. Blood 1998; 92: 3355–3361
  • Bertazzoli C, Marchesi E, Passoni L, Barni R, Ravagnani F, Lombardo C, Corneo G M, Pioltelli P, Pogliani E, Gambacorti-Passerini C. Differential recognition of a BCR/ABL peptide by lymphocytes from normal donors and chronic myeloid leukemia patients. Clinical Cancer Research 2000; 6: 1931–1935
  • ten Bosch G JA, Toornvliet A C, Friede T, Melief C JM, Leeksma O C. Recognition of peptides corresponding to the joining region of p210BCR-ABL protein by human T cells. Leukemia 1995; 9: 1344–1348
  • ten Bosch G JA, Joosten A M, Kessler J H, Melief C JM, Leeksma O C. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996; 88: 3522–3527
  • Pawelec G, Max H, Haider T, Breserud O, Merl A, da Suva P, Kalbacher H. BCR/ABL leukaemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognised by T cells found at low frequency in the repertoire of normal donors. Blood 1996; 88: 2118–2124
  • Smit W M, Rijnbeek M, van Bergen C AM, Willemze R, Falkenburg J HF. Generation of leukemia-reactive cytotoxic T lymphocytes from HLA-identical donors of patients with chronic myeloid leukaemia using modifications of a limiting dilution assay. Bone Marrow Transplantation 1998; 21: 553–560
  • Norbury L C, Clark R E, Christmas S E. b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in Chronic Myeloid Leukaemia. British Journal of Haematology 2000; 109: 616–621
  • Macintyre A R, Clark R E, Christmas S E. T cells from patients with chronic myeloid leukaemia have the ability to kill both autologous and HLA-matched leukaemic cells. Blood 2000; 96(Supplement 1)p255b, (abstract)
  • Clark R E, Lill J R, Hill S C, Norbury L C, Christmas S E, Bonner P LR, Creaser C S, Rees R C. Direct evidence that chronic myeloid leukaemia (CML) cells can express BCR-ABL junctional oligopeptides in association with class I HLA. Blood 2000; 96(Supplement 1)p150a, (abstract)
  • Biernaux C, Loos M, Sels A, Huez G, Stryckmans P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122
  • Fegan C, Morgan G, Whittaker J A. Spontaneous remission in a patient with chronic myeloid leukaemia. British Journal of Haematology 1989; 72: 594–595
  • Provan A B, Majer R V, Herbert A, Smith A G. Spontaneous remission of chronic myeloid leukaemia with loss of the Philadelphia chromosome. British Journal of Haematology 1991; 78: 578–579
  • Musashi M, Abe S, Yamada T, Tanaka J, Gotohda Y, Maeda S, Sato Y, Morioka M, Sakurada K, Minagawa T, Asaka M, Miyazaki T. Spontaneous remission in a patient with chronic myelogenous leukemia. New England Journal of Medicine 1997; 336: 337–339
  • Molldrem J J, Lee P P, Wang C, Felio K, Kantarjian H M, Champlin R E, Davis M M. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukaemia. Nature Medicine 2000; 6: 1018–1023
  • Choudhury A, Gajewski J L, Liang J C, Popat U, Claxton D F, Kliche K-O, Andreeff M, Champlin R E. Use of leukaemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukaemia. Blood 1997; 89: 1133–1142
  • Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg D A. Vaccination of patients with chronic myelogenous leukaemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000b; 95: 1781–1787
  • Posthuma E FM, Falkenburg J HF, Apperley J F, Gratwohl A, Roosnek E, Hertenstein B, Schipper R F, Schreuder G MT, D'Amaro J, Oudshoorn M, van Biezen J H, Hermans J, Willemze R, Niederwieser D. HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukaemia. Blood 1999; 93: 3863–3865
  • Momigliano Richiardi P, Tosi R, Martinelli G, Saglio G, Conte R, Barbanti M, Dall'Omo A, Farabegoli P, Favoino B, Gambelunghe C, Gandini A R, Marceno R, Misefari V, Mulargia M, Pratico L, Zaccaria A. The HLA class I-CML association revisited taking into account the two forms of gene fusion in the Philadelphia chromosome. A multicenter study. Leukemia 1994; 8: 2134–2137
  • Sidney J, Grey H M, Southwood S, Celis E, Wentworth P A, del Guercio M F, Kubo R T, Chesnut R W, Sette A. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Human Immunology 1996; 45: 79–93
  • Threlkeld S C, Wentworth P A, Kalams S A, Wilkes B M, Ruhl D J, Keogh E, Sidney J, Southwood S, Walker B D, Sette A. Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily: implications for vaccine development. Journal of Immunology 1997; 159: 1648–1657
  • Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and-B polymorphism. Immunogenetics 1999; 50: 201–212
  • Falkenburg J HF, Wafelman A R, Joosten P, Smit W M, van Bergen C AM, Bongaerts R, Lurvink E, van der Hoorn M, Kluck P, Landegent I E, Kluin-Nelemans H C, Fibbe W E, Willemze R. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201–1208
  • Gao L, Bellantuono I, Elsässer A, Marley S B, Gordon M Y, Goldman J M, Stauss H J. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.