99
Views
4
CrossRef citations to date
0
Altmetric
Original Article: Research

Inhibition of class II phosphoinositide 3-kinase γ expression by p185Bcr–Abl contributes to impaired chemotaxis and aberrant homing of leukemic cells

, , , &
Pages 1098-1107 | Received 20 Dec 2009, Accepted 06 Mar 2010, Published online: 10 Jun 2010

References

  • Wong S, Witte ON. The BCR–ABL story: bench to bedside and back. Annu Rev Immunol 2004;22:247–306.
  • Melo JV, Deininger MW. Biology of chronic myelogenous leukemia–signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 2004;18:545–568, vii–viii.
  • Salgia R, Li JL, Ewaniuk DS, et al BCR/ABL induces multiple abnormalities of cytoskeletal function. J Clin Invest 1997;100:46–57.
  • Salgia R, Quackenbush E, Lin J, et al The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1alpha. Blood 1999;94:4233–4246.
  • Ptasznik A, Urbanowska E, Chinta S, et al Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J Exp Med 2002;196:667–678.
  • Geay JF, Buet D, Zhang Y, et al p210BCR–ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 2005;65:2676–2683.
  • Durig J, Rosenthal C, Elmaagacli A, et al Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 2000;14:1652–1660.
  • Peled A, Hardan I, Trakhtenbrot L, et al Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002;20:259–266.
  • Cashman J, Clark-Lewis I, Eaves A, et al Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002;99:792–799.
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655–1657.
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008;27:5497–5510.
  • Steelman LS, Pohnert SC, Shelton JG, et al JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR–ABL in cell cycle progression and leukemogenesis. Leukemia 2004;18:189–218.
  • Martelli AM, Nyakern M, Tabellini G, et al Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006;20:911–928.
  • Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 2005;65:2047–2053.
  • Traer CJ, Foster FM, Abraham SM, et al Are class II phosphoinositide 3-kinases potential targets for anticancer therapies? Bull Cancer 2006;93:E53–E58.
  • Maffucci T, Cooke FT, Foster FM, et al Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 2005;169:789–799.
  • Arcaro A, Zvelebil MJ, Wallasch C, et al Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 2000;20:3817–3830.
  • Domin J, Gaidarov I, Smith ME, et al The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 2000;275:11943–11950.
  • Gaidarov I, Smith ME, Domin J, et al The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001;7:443–449.
  • Rozycka M, Lu YJ, Brown RA, et al cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12. Genomics 1998;54:569–574.
  • Misawa H, Ohtsubo M, Copeland NG, et al Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun 1998;244:531–539.
  • Pendergast AM, Muller AJ, Havlik MH, et al BCR sequences essential for transformation by the BCR–ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991;66:161–171.
  • Dai Z, Kerzic P, Schroeder WG, et al Deletion of the Src homology 3 domain and C-terminal proline-rich sequences in Bcr–Abl prevents Abl interactor 2 degradation and spontaneous cell migration and impairs leukemogenesis. J Biol Chem 2001;276:28954–28960.
  • Yu W, Sun X, Clough N, et al Abi1 gene silencing by short hairpin RNA impairs Bcr–Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis 2008;29:1717–1724.
  • Skorski T, Bellacosa A, Nieborowska-Skorska M, et al Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151–6161.
  • Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR–ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995;15:5531–5541.
  • Lataillade JJ, Clay D, Bourin P, et al Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002;99:1117–1129.
  • Pendergast AM, Quilliam LA, Cripe LD, et al BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175–185.
  • Puil L, Liu J, Gish G, et al Bcr–Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994;13:764–773.
  • Stanglmaier M, Warmuth M, Kleinlein I, et al The interaction of the Bcr–Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains. Leukemia 2003;17:283–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.