168
Views
6
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Number of expressed cancer/testis antigens identifies focal adhesion pathway genes as possible targets for multiple myeloma therapy

, , , , , , , & show all
Pages 1543-1549 | Received 01 Feb 2010, Accepted 30 Apr 2010, Published online: 08 Jun 2010

References

  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615–625.
  • Gaugler B, Van den Eynde B, van der Bruggen P, et al Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994;179:921–930.
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004;4:1.
  • Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 2009;100:2014–2021.
  • Andrade VC, Vettore AL, Felix RS, et al Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun 2008;8:2.
  • Condomines M, Hose D, Raynaud P, et al Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007;178:3307–3315.
  • Atanackovic D, Arfsten J, Cao Y, et al Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007;109:1103–1112.
  • Jungbluth AA, Ely S, DiLiberto M, et al The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 2005;106:167–174.
  • Andrade VC, Vettore AL, Regis Silva MR, et al Frequency and prognostic relevance of cancer testis antigen 45 expression in multiple myeloma. Exp Hematol 2009;37:446–449.
  • Houet L, Veelken H. Active immunotherapy of multiple myeloma. Eur J Cancer 2006;42:1653–1660.
  • Atanackovic D, Hildebrandt Y, Jadczak A, et al Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica 2010;95:785–793.
  • Pathway-Express software database [internet]. Available from: http://vortex.cs.wayne.edu/.
  • Oncomine database [internet]. Available from: http://www.oncomine.org.
  • Focal adhesion pathway database [internet]. Available from: http://www.genome.jp/kegg.
  • Nguyen QD, Faivre S, Bruyneel E, et al RhoA- and RhoD-dependent regulatory switch of Galpha subunit signaling by PAR-1 receptors in cellular invasion. FASEB J 2002;16:565–576.
  • Zhan F, Barlogie B, Arzoumanian V, et al Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007;109:1692–1700.
  • Agnelli L, Bicciato S, Mattioli M, et al Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 2005;23:7296–7306.
  • Fonseca R, Bergsagel PL, Drach J, et al International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23:2210–2221.
  • Zhan F, Hardin J, Kordsmeier B, et al Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002;99:1745–1757.
  • Teixidó J, Hemler ME, Greenberger JS, Anklesaria P. Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 1992;90:358–367.
  • Kawano MM, Huang N, Harada H, et al Identification of immature and mature myeloma cells in the bone marrow of human myelomas. Blood 1993;82:564–570.
  • Hurley RW, McCarthy JB, Verfaillie CM. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 1995;96:511–519.
  • Sugahara H, Kanakura Y, Furitsu T, et al Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. Exp Med 1994;179:1757–1766.
  • Robledo MM, Sanz-Rodriguez F, Hidalgo A, Teixidó J. Differential use of very late antigen-4 and -5 integrins by hematopoietic precursors and myeloma cells to adhere to transforming growth factor-beta1-treated bone marrow stroma. J Biol Chem 1998;273:12056–12060.
  • Preudhomme C, Roumier C, Hildebrand MP, et al Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000;19:2023–2032.
  • Perona R, Montaner S, Saniger L, et al Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 1997;11:463–475.
  • Bharti AC, Shishodia S, Reuben JM, et al Nuclear factor-κB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004;103:3175–3184.
  • Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett 2008;582:2093–2101.
  • Nassar N, Cancelas J, Zheng J, Williams DA, Zheng Y. Structure-function based design of small molecule inhibitors targeting Rho family GTPases. Curr Top Med Chem 2006;6:1109–1116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.