143
Views
9
CrossRef citations to date
0
Altmetric
Original Articles: Research

β-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia

, , , &
Pages 1550-1558 | Received 03 Feb 2010, Accepted 21 May 2010, Published online: 25 Jun 2010

References

  • Sperr WR, Jordan JH, Baghestanian M, et al Expression of mast cell tryptase by myeloblasts in a group of patients with acute myeloid leukemia. Blood 2001;98:2200–2209.
  • Sonneck K, Florian S, Böhm A, et al Evaluation of biologic activity of tryptase secreted from blast cells in acute myeloid leukemia. Leuk Lymphoma 2006;47:897–906.
  • Sommerhoff CP, Bode W, Matschiner G, Bergner A, Fritz H. The human mast cell tryptase tetramer: a fascinating riddle solved by structure, Biochim Biophys Acta 2000;1477:75–89.
  • Abe M, Kurosawa M, Ishikawa O, Miyachi Y, Kido H. Mast cell tryptase stimulates both human dermal fibroblast proliferation and type I collagen production. Clin Exp Allergy 1998;28:1509–1517.
  • Temkin V, Kantor B, Weg V, Hartman ML, Levi-Schaffer F. Tryptase activates the mitogen-activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing cytokine production and release. J Immunol 2002;169:2662–2669.
  • Mullan CS, Riley M, Clarke D, et al Beta-tryptase regulates IL-8 expression in airway smooth muscle cells by a PAR-2-independent mechanism. Am J Respir Cell Mol Biol 2008;38:600–608.
  • Tatler AL, Porte J, Knox A, Jenkins G, Pang L. Tryptase activates TGFbeta in human airway smooth muscle cells via direct proteolysis. Biochem Biophys Res Commun 2008;370:239–242.
  • Blair RJ, Meng H, Marchese MJ, et al Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997;99:2691–2700.
  • Boudreau N, Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 2003;5:140–146.
  • Kharfan-Dabaja MA, Patel SA, Osunkoya AO, et al Expression of the vascular endothelial growth factor receptors 1 and 2 in acute myeloid leukemia: incidence and feasibility of immunohistochemical staining. Clin Lab Haematol 2006;28:254–258.
  • Vales A, Kondo R, Aichberger KJ, et al Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2. Leuk Lymphoma 2007;48:1997–2007.
  • Li Yan, Zhang R, Lu XL, et al Tryptase relation to VEGF in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:793–797.
  • Bennett JM, Catovsky D, Daniel MT, et al Proposals for the classification of the acute leukaemias. French-American-British (FAB) cooperative group. Br J Haematol 1976;33:451–458.
  • Bennett JM, Catovsky D, Daniel MT, et al Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985;103:620–625.
  • Vogel W, Grünebach F, Messam CA, et al Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 2003;88:126–133.
  • Livak KL, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402–408.
  • Ranieri G, Ammendola M, Patruno R, et al Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol 2009;35:115–120.
  • Ribatti D, Finato N, Crivellato E, et al Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology 2007;51:837–842.
  • Ibaraki T, Muramatsu M, Takai S, et al The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage I non-small cell lung cancer. Eur J Cardiothorac Surg 2005;28:617–621.
  • Masuko K, Murata M, Xiang Y, et al Tryptase enhances release of vascular endothelial growth factor from human osteoarthritic chondrocytes. Clin Exp Rheumatol 2007;25:860–865.
  • Garvin S, Dabrosin C. In vivo measurement of tumor estradiol and vascular endothelial growth factor in breast cancer patients. BMC Cancer 2008;8:1–6.
  • Zlobec I, Vuong T, Compton CC, et al Combined analysis of VEGF and EGFR predicts complete tumour response in rectal cancer treated with preoperative radiotherapy. Br J Cancer 2008;98:450–456.
  • Zhang K, Hu S, Wu J, et al Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Mol Cancer 2009;28:8–11.
  • Aguayo A, Kantarjian H, Manshouri T, et al Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:2240–2245.
  • Keith T, Araki Y, Ohyagi M, et al Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 2007;137:206–215.
  • Hiramatsu A, Miwa H, Shikami M, et al Disease-specific expression of VEGF and its receptors in AML cells: possible autocrine pathway of VEGF/type1 receptor of VEGF in t(15;17) AML and VEGF/type2 receptor of VEGF in t(8;21) AML. Leuk Lymphoma 2006;47:89–95.
  • Imai N, Shikami M, Miwa H, et al t(8;21) acute myeloid leukaemia cells are dependent on vascular endothelial growth factor (VEGF)/VEGF receptor type 2 pathway and phosphorylation of Akt. Br J Haematol 2006;135:673–682.
  • Kessler T, Fehrmann F, Bieker R, Berdel WE. Mesters RM. Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets 2007;8:257–268.
  • Kawabata A, Kuroda R. Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol 2000;82:171–174.
  • Déry O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 1998;274:C1429–C1452.
  • Gruber BL, Marchese MJ, Santiago-Schwarz F, et al Protease-activated receptor-2 (PAR-2) expression in human fibroblasts is regulated by growth factors and extracellular matrix. J Invest Dermatol 2004;123:832–839.
  • Ritchie E, Saka M, MacKenzie C, et al Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase β in human endothelial cells. Br J Pharmacol 2007;150:1044–1054.
  • Freund-Michel V, Frossard N. Inflammatory conditions increase expression of protease-activated receptor-2 by human airway smooth muscle cells in culture. Fundam Clin Pharmacol 2006;20:351–357.
  • Nickel TJ, Kabir MH, Talreja J, Stechschulte DJ, Dileepan KN. Constitutive expression of functionally active protease-activated receptors 1 and 2 in human conjunctival epithelial cells. Mediators Inflamm 2006;2006:1–8.
  • Li T, He S. Induction of IL-6 release from human T cells by PAR-1 and PAR-2 agonists. Immunol Cell Biol 2006;84:461–466.
  • Kajikawa H, Yoshida N, Katada K, et al Helicobacter pylori activates gastric epithelial cells to produce interleukin-8 via protease-activated receptor 2. Digestion 2008;76:248–255.
  • Chiu LL, Perng DW, Yu CH, Su SN, Chow LP. Mold allergen, pen C 13, induces IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J Immunol 2007;178:5237–5244.
  • Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 2006;344:1263–1270.
  • Syeda F, Grosjean J, Houliston RA, et al Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 2006;281:11792–11804.
  • Boileau C, Amiable N, Martel-Pelletier J, et al Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007;9:R121.
  • Pan SL, Tao KY, Guh JH, et al The p38 mitogen-activated protein kinase pathway plays a critical role in PAR2-induced endothelial IL-8 production and leukocyte adhesion. Shock 2008;305:496–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.