462
Views
11
CrossRef citations to date
0
Altmetric
Reviews

MicroRNAs in mantle cell lymphoma

, &
Pages 1867-1875 | Received 13 Nov 2012, Accepted 09 Jan 2013, Published online: 19 Feb 2013

References

  • Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. pp 229–232.
  • Weisenburger DD, Vose JM, Greiner TC, et al. Mantle cell lymphoma. A clinicopathologic study of 68 cases from the Nebraska lymphoma study group. Am J Hematol 2000;64:190–196.
  • Herrmann A, Hoster E, Zwingers T, et al. Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 2009;27:511–518.
  • Geisler CH, Kolstad A, Laurell A, et al. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood 2008;112:2687–2693.
  • Delarue R, Haioun C, Ribrag V, et al. CHOP and DHAP plus rituximab followed by autologous stem cell transplantation (ASCT) in mantle cell lymphoma (MCL): a phase II study from the GELA. Blood 2013;121:48–53.
  • Geisler CH, Kolstad A, Laurell A, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by beam or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol 2012;158:355–362.
  • Hoster E, Dreyling M, Klapper W, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 2008;111:558–565.
  • Geisler CH, Kolstad A, Laurell A, et al. The mantle cell lymphoma international prognostic index (MIPI) is superior to the international prognostic index (IPI) in predicting survival following intensive first-line immunochemotherapy and autologous stem cell transplantation (ASCT). Blood 2010;115:1530–1533.
  • Budde LE, Guthrie KA, Till BG, et al. Mantle cell lymphoma international prognostic index but not pretransplantation induction regimen predicts survival for patients with mantle-cell lymphoma receiving high-dose therapy and autologous stem-cell transplantation. J Clin Oncol 2011;29:3023–3029.
  • Räty R, Honkanen T, Jantunen E, et al. Prolonged immunochemotherapy with rituximab, cytarabine and fludarabine added to cyclophosphamide, doxorubicin, vincristine and prednisolone and followed by rituximab maintenance in untreated elderly patients with mantle cell lymphoma: a prospective study. Leuk Lymphoma 2012;53:1920–1928.
  • Todorovic M, Balint B, Andjelic B, et al. Outcome prediction of advanced mantle cell lymphoma by international prognostic index versus different mantle cell lymphoma indexes: one institution study. Med Oncol 2012;29:2212–2219.
  • Shah JJ, Fayad L, Romaguera J. Mantle cell international prognostic index (MIPI) not prognostic after R-hyper-CVAD. Blood 2008;112:2583; author reply 2583–2584.
  • van't Veer MB, de Jong D, MacKenzie M, et al. High-dose ara-c and BEAM with autograft rescue in R-CHOP responsive mantle cell lymphoma patients. Br J Haematol 2009;144:524–530.
  • Christian B, Zhao W, Hamadani M, et al. Mantle cell lymphoma 12 years after allogeneic bone marrow transplantation occurring simultaneously in recipient and donor. J Clin Oncol 2010;28:e629–e632.
  • Vaandrager JW, Schuuring E, Zwikstra E, et al. Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. Blood 1996;88:1177–1182.
  • Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007;7:750–762.
  • Pérez-Galán P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 2011;117:26–38.
  • Beltran E, Fresquet V, Martinez-Useros J, et al. A Cyclin-D1 interaction with Bax underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proc Natl Acad Sci USA 2011;108:12461–12466.
  • Lovec H, Grzeschiczek A, Kowalski MB, et al. Cyclin D1/Bcl-1 cooperates with Myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 1994;13:3487–3495.
  • Gladden AB, Woolery R, Aggarwal P, et al. Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene 2006;25:998–1007.
  • Klier M, Anastasov N, Hermann A, et al. Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 2008;22:2097–2105.
  • Royo C, Salaverria I, Hartmann EM, et al. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 2011;21:322–334.
  • Zhao J-J, Lin J, Lwin T, et al. MicroRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010;115:2630–2639.
  • Rao E, Jiang C, Ji M, et al. The miRNA-17˜92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 2012;26:1064–1072.
  • Iqbal J, Shen Y, Liu Y, et al. Genome-wide microRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood 2012;119:4939–4948.
  • Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of LET-7 heterochronic regulatory RNA. Nature 2000;408:86–89.
  • Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862–864.
  • Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858–862.
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12:861–874.
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10:126–139.
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597–610.
  • Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012;13:271–282.
  • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39(Database issue):D152–D157.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–233.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005;120:15–20.
  • Johnson SM, Grosshans H, Shingara J, et al. Ras is regulated by the LET-7 microRNA family. Cell 2005;120:635–647.
  • Anand S, Majeti BK, Acevedo LM, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010;16:909–914.
  • Swarbrick A, Woods SL, Shaw A, et al. Mir-380-5p represses p53 to control cellular survival and is associated with poor outcome in Mycn-amplified neuroblastoma. Nat med 2010;16:1134–1140.
  • Bueno MJ, Gómez de Cedrón M, Gómez-López G, et al. Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood 2011;117:6255–6266.
  • Jima DD, Zhang J, Jacobs C, et al. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood 2010;116:e118–e127.
  • Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011;11:849–864.
  • Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004;14:2486–2494.
  • Mestdagh P, Lefever S, Pattyn F, et al. The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res 2011;39:e136.
  • Georgantas RW, Hildreth R, Morisot S, et al. Cd34 + hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007;104:2750–2755.
  • Chen C-Z, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303:83–86.
  • Ramkissoon SH, Mainwaring LA, Ogasawara Y, et al. Hematopoietic-specific microrna expression in human cells. Leuk Res 2006;30:643–647.
  • Malumbres R, Sarosiek KA, Cubedo E, et al. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 2009;113:3754–3764.
  • Koralov SB, Muljo SA, Galler GR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008;132:860–874.
  • O’Carroll D, Mecklenbrauker I, Das PP, et al. A slicer-independent role for Argonaute 2 in hematopoiesis and the microrna pathway. Genes Dev 2007;21:1999–2004.
  • Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008;132:875–886.
  • Zhang J, Jima DD, Jacobs C, et al. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood 2009;113:4586–4594.
  • Schotte D, Pieters R, Den Boer ML. Micrornas in acute leukemia: from biological players to clinical contributors. Leukemia 2012;26: 1–12.
  • Fabbri M, Croce CM. Role of microRNAs in lymphoid biology and disease. Curr Opin Hematol 2011;18:266–272.
  • Pedersen IM, Otero D, Kao E, et al. Onco-miR-155 targets SHIP to promote TNF-alpha-dependent growth of B-cell lymphomas. EMBO Mol Med 2009;1:288–295.
  • Navarro A, Beà S, Fernández V, et al. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in mantle cell lymphomas. Cancer Res 2009;69: 7071–7078.
  • Montes-Moreno S, Martinez N, Sanchez-Espiridión B, et al. miRNA expression in diffuse large B-cell lymphoma treated with chemoimmunotherapy. Blood 2011;118:1034–1040.
  • Kim S-W, Ramasamy K, Bouamar H, et al. MicroRNAs miR-125a and miR-125b constitutively activate the Nf-κb pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 2012;109:7865–7870.
  • Zhang Y, Roccaro AM, Rombaoa C, et al. LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood 2012;120: 1678–1686.
  • Zhang X, Zhao X, Fiskus W, et al. Coordinated silencing of Myc-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 2012;22:506–523.
  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99: 15524–15529.
  • Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011;305:59–67.
  • Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008;9:405–414.
  • Enomoto Y, Kitaura J, Hatakeyama K, et al. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia 2011;25:1849–1856.
  • Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010;467:86–90.
  • Schraders M, Jares P, Bea S, et al. Integrated genomic and expression profiling in mantle cell lymphoma: identification of gene-dosage regulated candidate genes. Br J Haematol 2008;143: 210–221.
  • Wiestner A, Tehrani M, Chiorazzi M, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 2007;109:4599–4606.
  • Chen RW, Bemis LT, Amato CM, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 2008;112:822–829.
  • Deshpande A, Pastore A, Deshpande AJ, et al. 3’ UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 2009;8: 3584–3592.
  • Zhang X, Chen X, Lin J, et al. Myc represses miR-15a/ miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 2012;31: 3002–3008.
  • Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010;17:215–220.
  • Klein U, Lia M, Crespo M, et al. The dLeu2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010;17:28–40.
  • Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J 2012;18:262–267.
  • Inomata M, Tagawa H, Guo Y-M, et al. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009;113:396–402.
  • Jiang P, Rao EY, Meng N, et al. MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiat Oncol 2010;5:100.
  • Rudelius M, Pittaluga S, Nishizuka S, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006;108:1668–1676.
  • Mendell JT. Miriad roles for the miR-17-92 cluster in development and disease. Cell 2008;133:217–222.
  • Di Lisio L, Gómez-López G, Sánchez-Beato M, et al. Mantle cell lymphoma: transcriptional regulation by micrornas. Leukemia 2010;24:1335–1342.
  • Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003;3: 185–197.
  • Wolowiec D, Berger F, Ffrench P, et al. CDK1 and cyclin A expression is linked to cell proliferation and associated with prognosis in non-Hodgkin's lymphomas. Leuk Lymphoma 1999;35:147–157.
  • Marzec M, Kasprzycka M, Lai R, et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood 2006;108:1744–1750.
  • Grossel MJ, Hinds PW. From cell cycle to differentiation: an expanding role for CDK6. Cell cycle 2006;5:266–270.
  • Zhou K, Yi S, Yu Z, et al. MicroRNA-223 expression is uniformly down-regulated in B cell lymphoproliferative disorders and is associated with poor survival in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2012;53:1155–1161.
  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–838.
  • Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010;28:341–347.
  • Nagel R, le Sage C, Diosdado B, et al. Regulation of the adenomatous polyposis coli gene by the mir-135 family in colorectal cancer. Cancer Res 2008;68:5795–5802.
  • Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 2011;118:5891–5900.
  • Herrmann A, Hoster E, Zwingers T, et al. Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 2009;27:511–518.
  • Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med 2012;367:520–531.
  • Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature 2008;455:64–71.
  • Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol 2012;19:60–71.
  • Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012;4:143–159.
  • Calin GA, Cimmino A, Fabbri M, et al. miR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008;105:5166–5171.
  • Craig VJ, Tzankov A, Flori M, et al. Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia 2012;26:2421–2424.
  • Mavrakis KJ, Van Der Meulen J, Wolfe AL, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011;43:673–678.
  • Cohen SM. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nat Methods 2009;6:873–874.
  • Lu Y, Xiao J, Lin H, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009;37:e24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.