222
Views
3
CrossRef citations to date
0
Altmetric
Original Article: Research

Functional p53 can modulate the relationship between E2F-1 expression and tumor kinetics in Hodgkin lymphoma

, , , , &
Pages 748-754 | Received 29 Jan 2014, Accepted 29 May 2014, Published online: 06 Aug 2014

References

  • Tsantoulis PK, Gorgoulis VG. Involvement of E2F transcription factor family in cancer. Eur J Cancer 2005;41:2403–2414.
  • Johnson DG, Degregori J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 2006;6:731–738.
  • Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998;12:2245–2262.
  • Aguda BD, Kim Y, Piper-Hunter MG, et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 2008;105:19678–19683.
  • Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005;24:2810–2826.
  • Sahin F, Sladek TL. E2F-1 has dual roles depending on the cell cycle. Int J Biol Sci 2010;6:116–128.
  • Hallstrom TC, Nevins JR. Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci USA 2003;100:10848–10853.
  • Pomerantz J, Schreiber-Agus N, Liégeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998;92:713–723.
  • Liontos M, Niforou K, Velimezi G et al. Modulation of the E2F-1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F-1 targets in osteosarcomas. Am J Pathol 2009;175:376–391.
  • Morris EJ, Michaud WA, Ji JY, et al. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006;2:e196.
  • Urist M, Tanaka T, Poyurovsky MV, et al. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 2004;18:3041–3054.
  • Yamasaki L. Balancing proliferation and apoptosis in vivo: the Goldilocks theory of E2F/DP action. Biochim Biophys Acta 1999;1423:M9–M15.
  • Zhang SY, Liu SC, Al-Saleem LF, et al. E2F-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev 2000;9:395–401.
  • Suzuki T, Yasui W, Yokozaki H, et al. Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 1999;81:535–538.
  • Gorgoulis VG, Zacharatos P, Mariatos G, et al. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 2002;198:142–156.
  • Pützer BM. E2F-1 death pathways as targets for cancer therapy. J Cell Mol Med 2007;11:239–251.
  • Vassilakopoulos TP, Nadali G, Angelopoulou MK, et al. The prognostic significance of β2-microglobulin in patients with Hodgkin's lymphoma. Haematologica 2002;87:701–708.
  • Vassilakopoulos TP, Angelopoulou MK, Siakantaris MP, et al. Combination chemotherapy plus low-dose involved-field radiotherapy for early clinical stage Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 2004;59:765–781.
  • Georgiadi EC, Sachinis N, Dimtsas D, et al. Evaluation of apoptosis in classical Hodgkin's lymphoma: comparing different methods. J BUON 2012;17:746–752.
  • Kroemer G, Galluzzi L, Vandenabeele P, et al.; Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009;16:3–11.
  • Doussis-Anagnostopoulou IA, Vassilakopoulos TP, Thymara I, et al. Topoisomerase IIalpha expression as an independent prognostic factor in Hodgkin's lymphoma. Clin Cancer Res 2008;14:1759–1766.
  • Johnson DG, Schwarz JK, Cress WD, et al. Expression of transcription factor E2F-1 induces quiescent cells to enter S phase. Nature 1993;365:349–352.
  • DeGregori J, Leone G, Ohtani K, et al. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 1995;9:2873–2887.
  • Qin XQ, Livingston DM, Kaelin WG Jr, et al. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994;91:10918–10922.
  • Lai R, Medeiros LJ, Coupland R, et al. Immunohistochemical detection of E2F-1 in non-Hodgkin's lymphomas: a survey of 124 cases. Mod Pathol 1998;11:457–463.
  • Chan JA, Olvera M, Lai R, et al. Immunohistochemical expression of the transcription factor DP-1 and its eterodimeric partner E2F-1 in non-Hodgkin lymphoma. Appl Immunohistochem Mol Morphol 2002;10:322–326.
  • Rabbani F, Richon VM, Orlow I, et al. Prognostic significance of transcription factor E2F-1 in bladder cancer: genotypic and phenotypic characterization. J Natl Cancer Inst 1999;91:874–881.
  • Zhang SY, Liu SC, Johnson DG, et al. E2F-1 gene transfer enhances invasiveness of human head and neck carcinoma cell lines. Cancer Res 2000;60:5972–5976.
  • Sánchez-Beato M, Piris MA, Martínez-Montero JC, et al. MDM2 and p21WAF1/CIP1, wild-type p53-induced proteins, are regularly expressed by Sternberg-Reed cells in Hodgkin's disease. J Pathol 1996;180:58–64.
  • García JF, Camacho FI, Morente M, et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003;101:681–689.
  • Kanavaros P, Stefanaki K, Vlachonikolis J, et al. Expression of p53, p21/waf1, bcl-2, bax, Rb and Ki67 proteins in Hodgkin's lymphomas. Histol Histopathol 2000;15:445–453.
  • Kokontis JM, Wagner AJ, O’Leary M, et al. A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 2001;20:659–668.
  • Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 2008;28:2167–2174.
  • Morlan J, Baker J, Sinicropi D. Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One 2009;4:e4584.
  • Møller MB, Kania PW, Ino Y, et al. Frequent disruption of the RB1 pathway in diffuse large B cell lymphoma: prognostic significance of E2F-1 and p16INK4A. Leukemia 2000;14:898–904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.