724
Views
34
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665

, , , , , , , , , , & show all
Pages 2298-2306 | Received 28 Jul 2015, Accepted 17 Jan 2016, Published online: 18 Feb 2016

References

  • Mullighan C, Miller C, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–114.
  • Virely C, Moulin S, Cobaleda C, et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia. 2010;24:1200–1204.
  • Schjerven H, McLaughlin J, Arenzana TL, et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–1083.
  • Martinelli G, Iacobucci I, Storlazzi C, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapase: A GIMEMA AL WB report. J Clini Oncol. 2009;27:5202–5207.
  • van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123:1691–1698.
  • Pfeifer H, Raum K, Markovic S, et al. In adult Philadelphia chromosome positive acute lymphoblastic leukemia, the negative prognostic impact of IKZF1, CDKN2A/B and PAX5 deletions is not abrogated by allogeneic stem cell tranplantation in first complete remission. Blood (Suppl). 2013;122:Abstract 231
  • Hofmann W, Komor M, Wassmann B, et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph + acute lymphoblastic leukemia. Blood. 2003;102:659–661.
  • Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently preced imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL). Blood. 2007;110:727–734.
  • Jones D, Thomas D, Yin C, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113:985–994.
  • Soverini S, Vitale A, Poerio A, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96:552–557.
  • Pfeifer H, Lange T, Wystub S, et al. Prevalence and dynamics of bcr-abl kinase domain mutations during imatinib treatment differ in patients with newly diagnosed and recurrent bcr-abl positive acute lymphoblastic leukemia. Leukemia. 2012;26:1475–1481.
  • Wetzler M, Watson D, Stock W, et al. Autologous transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia achieves outcomes similar to allogeneic transplantation: results of a CALGB Study 10001 (Alliance). Haematologica. 2014;99:111–115.
  • Stock W, Yu D, Karrison T, et al. Quantitative real-time RT-PCR monitoring of BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood and bone marrow samples. Int J Oncol. 2006;28:1099–1103.
  • Soverini S, Martinelli G, Amabile M, et al. Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib. Clin Chem. 2004;50:1205–1213.
  • Gruber F, Lamark T, Anonli A, et al. Selecting and deselecting imatinib resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL. Leukemia. 2005;19:2159–2165.
  • Mullighan C, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–764.
  • Lin M, Wei L, Sellers W, et al. dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics. 2004;20:1233–1240.
  • Venkatraman E, Olshen A. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23:657–663.
  • Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. JASA. 1958;53:457–481.
  • Cox DR. Regression models and life-tables. J R Stat Soc Series B Stat Methodol. 1972;34:187–220.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. 2014;URL http://www.R-project.org/ [last accessed August 2015].
  • Koval G, Wetzler M, Watson D, et al. Abl kinase domain mutations leading to relapse of Ph + acute lymphoblastic leukemia (ALL) occur commonly and can be detected at initial diagnosis: molecular results from CALGB 10001. Blood (Suppl). 2011;118:Abstract 2541
  • Martinez-Serra J, Gutierrez A, Marcus TF, et al. Four-channel asymmetric Real-Time PCR hybridization probe assay: a rapid pre-screening method for critical BCR-ABL kinase domain mutations. Clin Biochem. 2012;45:345–351.
  • Churchman M, Low J, Qu C, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28:343–356.
  • Iacobucci I, Storlazzi C, Cilloni D, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell' Adulto Acute Leukemia Working Party (GIMEMA AL WP). Lymphoid Neoplasia. 2009;114:2159–2167.
  • Chiaretti S, Vitale A, Elia L, et al. First results of the multicenter total therapy Gimema LAL 1509 protocol for de novo adult Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) patients. Blood (Suppl). 2014;124:Abstract 797
  • Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103:2794–2799.
  • Ravandi F, O’Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–2077.
  • Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–6528.
  • Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study if imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100:653–661.
  • Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16:1547–1555.
  • Burmeister T, Schwartz S, Bartram CR, et al. Patients’ age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112:918–919.
  • DeBoer R, Mulkey F, Koval G, et al. Clinical impact of Abl1 kinase and IKZF1 mutations in adults with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB 10001 and 9665 (Alliance). Haematologica (Suppl 1) 2014;99:Abstract 258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.