1,830
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Use of class I histone deacetylase inhibitor romidepsin in combination regimens

&
Pages 1755-1765 | Received 21 Dec 2015, Accepted 21 Feb 2016, Published online: 27 Apr 2016

References

  • Sajan SA, Hawkins RD. Methods for identifying higher-order chromatin structure. Annu Rev Genomics Hum Genet. 2012;13:59–82.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–784.
  • New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol. 2012;6:637–656.
  • Marsoni S, Damia G, Camboni G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics 2008;3:164–171.
  • Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002;86:41–65.
  • ISTODAX (romidepsin) [package insert]. Summit, NJ: Celgene Corporation; 2014. [cited 2016 Apr 15]. Available from: http://www.istodax.com/wp-content/uploads/ISTODAX_PackageInsert.pdf.
  • Zolinza (vorinostat) [package insert]. Whitehouse Station, NJ: Merck & Co, Inc; 2015. [cited 2016 Apr 15]. Available from: https://www.merck.com/product/usa/pi_circulars/z/zolinza/zolinza_pi.pdf.
  • Beleodaq (belinostat) [package insert]. Irvine, CA: Spectrum Pharmaceuticals; 2014. [cited 2016 Apr 15]. Available from: http://www.sppirx.com/downloads/140703_final-beleodaq-pi-pt-info.pdf.
  • Farydak (panobinostat) [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corp; 2016. [cited 2016 Apr 15]. Available from: http://www.pharma.us.novartis.com/product/pi/pdf/farydak.pdf.
  • NCCN clinical practice guidelines in oncology: non-Hodgkin's lymphomas V.2.2016. [cited 2016 Apr 15]. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
  • Foss FM, Zinzani PL, Vose JM, et al. Peripheral T-cell lymphoma. Blood 2011;117:6756–6767.
  • Horwitz SM. Management of peripheral T-cell non-Hodgkin’s lymphoma. Curr Opin Oncol. 2007;19:438–443.
  • Foss FM, Carson KR, Pinter-Brown L, et al. Comprehensive oncology measures for peripheral T-cell lymphoma treatment (COMPLETE): first detailed report of primary treatment. Blood. 2012;120:Abstract 1614.
  • Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31:1970–1976.
  • Jawed SI, Myskowski PL, Horwitz S, et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and sezary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol. 2014;70:205.e1–205.e16.
  • Demierre M. Mycosis fungoides and sezary syndrome: the burden of pruritus. Commun Oncol. 2010;7:399–404.
  • Prince HM, Whittaker S, Hoppe RT. How I treat mycosis fungoides and Sézary syndrome. Blood. 2009;114:4337–4353.
  • Parker SR, Bradley B. Treatment of cutaneous T-cell lymphoma/mycosis fungoides. Dermatol Nurs. 2006;18:566–570, 573–575. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17286158.
  • Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised international society for cutaneous lymphomas/european organisation for research and treatment of cancer staging proposal. J Clin Oncol. 2010;28:4730–4739.
  • Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8:718–728.
  • Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001;98:2865–2868.
  • Marshall JL, Rizvi N, Kauh J, et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol. 2002;2:325–332.
  • Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–5417.
  • Piekarz RL, Frye R, Prince HM, et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117:5827–5834.
  • Coiffier B, Pro B, Prince HM, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30:631–636.
  • Coiffier B, Pro B, Prince HM, et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014;7:11. Available from: http://jhoonline.biomedcentral.com/articles/10.1186/1756-8722-7-11.
  • Pro B, Horwitz SM, Prince HM, et al. Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma (AITL). Blood. 2014;124:Abstract 1742.
  • Whittaker SJ, Demierre M, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–4491.
  • Kim YH, Demierre MF, Kim EJ, et al. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin. Leuk Lymphoma. 2013;54:284–289.
  • Foss F, Coiffier B, Horwitz S, et al. Tolerability to romidepsin in patients with relapsed/refractory T-cell lymphoma. Biomark Res. 2014;2:167771-2-16. eCollection 2014.
  • Navari RM, Koeller JM. Electrocardiographic and cardiovascular effects of the 5-hydroxytryptamine-3 receptor antagonists. Ann Pharmacother. 2003;37:1276–1286.
  • Piekarz RL, Frye AR, Wright JJ, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–3773.
  • Cabell C, Bates S, Piekarz R, et al. Systematic assessment of potential cardiac effects of the novel histone deacetylase (HDAC) inhibitor romidepsin. Blood. 2009;114:Abstract 3709.
  • Sager PT, Balser B, Wolfson J, et al. Electrocardiographic effects of class 1 selective histone deacetyalse inhibitor romidepsin. Cancer Med. 2015;4:1178–1185.
  • Folotyn (pralatrexate injection) [package insert]. Westminster, CO: Allos Therapeutics, Inc; 2012. [cited 2016 Apr 15]. Available from: http://www.folotyn.com/downloads/2012_05_folotyn_FPI.pdf.
  • Jain S, Jirau-Serrano X, Zullo KM, et al. Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T-cell lymphoma. Clin Cancer Res. 2015;21:2096–2106.
  • Revlimid (lenalidomide) [package insert]. Summit, NJ: Celgene Corporation; 2015. [cited 2016 Apr 15]. Available from: http://www.revlimid.com/wp-content/uploads/full-prescribing-information.pdf.
  • Witzig TE, Vose JM, Moore TD, et al. Results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory indolent non-Hodgkin’s lymphoma. Blood. 2007;110:Abstract 2560.
  • Witzig TE, Wiernik PH, Moore T, et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27:5404–5409.
  • Wiernik PH, Lossos IS, Tuscano JM, et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:4952–4957.
  • Cosenza M, Civallero M, Fiorcari S, et al. Romidepsin synergizes with lenalidomide in T cell lymphoma cell lines by increasing reactive oxygen species and modulating PI3K/AKT and MAPK/ERK signaling pathways. Blood. 2014;124:Abstract 1778.
  • Cosenza M, Civallero M, Fiorcari S, et al. Romidepsin and lenalidomide show a synergistic effect in T-cell lymphoma cell lines. Blood. 213:122:Abstract 5148.
  • Lunning MA, Ruan J, Nair S, et al. A phase I/II trial of the combination of romidepsin and lenalidomide in patients with relaped/refractory lymphoma and myeloma: phase 1 results. J Clin Oncol. 2014;32:Abstract 8582.
  • Mehta-Shah N, Lunning MA, Ruan J, et al. A phase I/II trial of the combination of romidepsin and lenalidomide in patients with relapsed/refractory lymphoma and myeloma. Hematol Oncol. 2015;33:Abstract 016.
  • Fowler NH, Davis RE, Rawal S, et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol. 2014;15:1311–1318.
  • Chong EA, Ahmadi T, Aqui NA, et al. Combination of lenalidomide and rituximab overcomes rituximab resistance in patients with indolent B-cell and mantle cell lymphomas. Clin Cancer Res. 2015;21:1835–1842.
  • Shimizu R, Kikuchi J, Wada T, et al. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia. 2010;24:1760–1768.
  • Friedberg J, Mahadevan D, Jung J, et al. Phase 2 trial of alisertib (MLN8237), an investigational, potent inhibitor of aurora A kinase (AAK), in patients (pts) with aggressive B- and T-cell non-Hodgkin lymphoma (NHL). Blood. 2011;118:Abstract 95.
  • Barr PM, Li H, Spier CM, et al. U.S. intergroup phase II trial (SWOG 1108) of alisertib, an investigational aurora A kinase (AAK) inhibitor, in patients with peripheral T-cell lymphoma (PTCL; NCT01466881). J Clin Oncol. 2014;5s:Abstract 8523.
  • Zullo K, Guo Y, Cooke L, et al. The investigational aurora A kinase inhibitor alisertib exhibits broad activity in preclinical models of T-cell lymphoma and is highly synergistic with romidepsin. Blood. 2014;124:Abstract 4493.
  • Fanale MA, Hagemeister FB, Fayad L, et al. A phase I trial of alisertib plus romidepsin for relapsed/refractroy aggressive B- and T-cell lymphomas. Blood. 2014;124:Abstract 1744.
  • Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–107.
  • Belinsky SA, Klinge DM, Stidley CA, et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 2003;63:7089–7093.
  • Dacogen (decitabine) [package insert]. Dublin, CA: Astex Pharmaceuticals, Inc; 2014. [cited 2016 Apr 15]. Available from: http://otsuka-us.com/products/Documents/DACOGEN.PI.pdf.
  • Zhu WG, Lakshmanan RR, Beal MD, et al. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res. 2001;61:1327–1333.
  • Klisovic MI, Maghraby EA, Parthun MR, et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 2003;17:350–358.
  • Shaker S, Bernstein M, Momparler LF, et al. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res. 2003;27:437–444.
  • Kalac M, Scotto L, Marchi E, et al. HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL. Blood. 2011;118:5506–5516.
  • Marchi E, Zullo KM, Amengual JE, et al. The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T-cell lymphoma. Br J Haematol. 2015; 171:215–226.
  • Palii SS, Van Emburgh BO, Sankpal UT, et al. DNA methylation inhibitor 5-aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol. 2008;28:752–771.
  • Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–586.
  • Lu LJ, Randerath K. Long term instability and molecular mechanism of 5-azacytidine-induced DNA hypomethylation in normal and neoplastic tissues in vivo. Mol Pharmacol. 1984;26:594–603.
  • Dupuis J, Morschhauser F, Ghesquieres H, et al. Combination of romidepsin with cyclosphosphamide, doxorubicin, vinrcristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: a non-randomised, phase 1b/2 study. Lancet Haematol. 2015;2:e160–e165.
  • Delarue R, Zinzani PL, Hertzberg MS, et al. ROCHOP study: a phase III randomized study of CHOP compared to romidepsin-CHOP in untreated peripheral T-cell lymphoma. J Clin Oncol. 2013;31:Abstract TPS8616.
  • Zelenetz AD, Hamlin P, Kewalramani T, et al. Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2003;14:i5–i10.
  • Chihara D, Oki Y, Fayad L, et al. Phase I study of romidepsin in combination with ICE (ifosfamide, carboplatin, and etoposide) in patients with relapsed or refractory peripheral T-cell lymphoma. Blood. 2014;124:Abstract 1748.
  • Velcade (bortezomib) [package insert]. Cambridge, MA: Millennium Pharmaceuticals, Inc; 2015. [cited 2016 Apr 15]. Available from: http://www.velcade.com/files/pdfs/velcade_prescribing_information.pdf.
  • Khan SB, Maududi T, Barton K, et al. Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol. 2004;125:156–161.
  • Catley L, Weisberg E, Kiziltepe T, et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006;108:3441–3449.
  • Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004;10:3839–3852.
  • Sutheesophon K, Kobayashi Y, Takatoku MA, et al. Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol. 2006;115:78–90.
  • Kikuchi J, Wada T, Shimizu R, et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood. 2010;116:406–417.
  • Harrison SJ, Quach H, Link E, et al. A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood. 2011;118:6274–6283.
  • Liu FT, Agrawal SG, Gribben JG, et al. Bortezomib blocks bax degradation in malignant B cells during treatment with TRAIL. Blood. 2008;111:2797–2805.
  • Faderl S, Rai K, Gribben J, et al. Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. Cancer. 2006;107:916–924.
  • Liu FT, Agrawal SG, Movasaghi Z, et al. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood. 2008;112:3835–3846.
  • Byrd JC, Shinn C, Ravi R, et al. Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood. 1999;94:1401–1408.
  • Aron JL, Parthun MR, Marcucci G, et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood. 2003;102:652–658.
  • Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood. 2005;105:959–967.
  • Dai Y, Chen S, Kramer LB, et al. Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res. 2008;14:549–558.
  • Zinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:4293–4297.
  • Cultrera JL, Rosenberg L, McConkey DJ, et al. The histone deacetylase inhibitor vorinostat induces apoptosis in T-cell lymphoma cell lines and synergizes with bortezomib. Blood. 2008;112:Abstract 1587.
  • Holkova B, Kmieciak M, Bose P, et al. Phase 1 study of bortezomib and romidepsin in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma, indolent B-cell lymphoma, peripheral T-cell lymphoma, or cutaneous T-cell lymphoma: updated results. Blood. 2014;124:Abstract 3050.
  • McBride A, Klaus JO, Stockerl-Goldstein K. Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health Syst Pharm. 2015;72:353–360.
  • Akilov OE, Grant C, Frye R, et al. Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous T-cell lymphoma lesions. Br J Dermatol. 2012;167:194–197.
  • Jones SF, Infante JR, Spigel DR, et al. Phase 1 results from a study of romidepsin in combination with gemcitabine in patients with advanced solid tumors. Cancer Invest. 2012;30:481–486.
  • Gemzar (gemcitabine for injection) [package insert]. Indianapolis, IN: Lilly USA; 2014. [cited 2016 Apr 15]. Available from: http://pi.lilly.com/us/gemzar.pdf.
  • Sato N, Ohta T, Kitagawa H, et al. FR901228, a novel histone deacetylase inhibitor, induces cell cycle arrest and subsequent apoptosis in refractory human pancreatic cancer cells. Int J Oncol. 2004;24:679–685.
  • Rajgolikar G, Chan KK, Wang HC. Effects of a novel antitumor depsipeptide, FR901228, on humanbreast cancer cells. Breast Cancer Res Treat. 1998;51:29–38.
  • Hirokawa Y, Arnold M, Nakajima H, et al. Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol Ther. 2005;4:956–960.
  • Vinodhkumar R, Song YS, Ravikumar V, et al. Depsipeptide a histone deacetlyase inhibitor down regulates levels of matrix metalloproteinases 2 and 9 mRNA and protein expressions in lung cancer cells (A549). Chem Biol Interact. 2007;165:220–229.
  • Yu XD, Wang SY, Chen GA, et al. Apoptosis induced by depsipeptide FK228 coincides with inhibition of survival signaling in lung cancer cells. Cancer J. 2007;13:105–113.
  • Vinodhkumar R, Song YS, Devaki T. Romidepsin (depsipeptide) induced cell cycle arrest, apoptosis and histone hyperacetylation in lung carcinoma cells (A549) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Biomed Pharmacother. 2008;62:85–93.
  • Khabele D, Son DS, Parl AK, et al. Drug-induced inactivation or gene silencing of class I histone deacetylases suppresses ovarian cancer cell growth: implications for therapy. Cancer Biol Ther. 2007;6:795–801.
  • Lowell W, Wick MJ, Campos DR, et al. In vivo evaluation of depsipeptide (FK228) alone or in combination with gemcitabine in two human pancreas tumor xenograft models. Proc Amer Assoc Cancer Res. 2006;66:900–901.
  • Gerber DE, Skelton R, Dong Y, et al. Phase I and pharmacodynamic study of the histone deacetylase (HDAC) inhibitor romidepsin plus erlotinib in previously treated advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2013;31:Abstract 8088.
  • Janne PA, Johnson BE. Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2006;12:4416s–4420s.
  • Zhang W, Peyton M, Xie Y, et al. Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J Thorac Oncol. 2009;4:161–166.
  • Burgess AJ, Pavey S, Warrener R, et al. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol. 2001;60:828–837.
  • Cartee L, Wang Z, Decker RH, et al. The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells. Cancer Res. 2001;61:2583–2591.
  • Schrump DS, Matthews W, Chen GA, et al. Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cells. Clin Cancer Res. 1998;4:2885–2890.
  • Nguyen DM, Schrump WD, Tsai WS, et al. Enhancement of depsipeptide-mediated apoptosis of lung or esophageal cancer cells by flavopiridol: activation of the mitochondria-dependent death-signaling pathway. J Thorac Cardiovasc Surg. 2003;125:1132–1142.
  • Abraxane (paclitaxel protein-bound particles for injectable suspension) [package insert]. Summit, NJ: Celgene Corporation; 2015. [cited 2016 Apr 15]. Available from: http://www.abraxane.com/wp-content/uploads/Abraxane_Prescribing_Information.pdf.
  • Robertson FM, Chu K, Boley KM, et al. The class I HDAC inhibitor romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J Exp Ther Oncol. 2013;10:219–233.
  • Silver DP, Richardson AL, Eklund AC, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–1153.
  • Wilson AJ, Lalani AS, Wass E, et al. Romidepsin (FK228) combined with cisplatin stimulates DNA damage-induced cell death in ovarian cancer. Gynecol Oncol. 2012;127:579–586.