19
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Fludarabine for Treatment of Adult Acute Myelogenous Leukemia

Pages 7-13 | Published online: 01 Jul 2009

References

  • LePage G. A., Khaliq A., Gottleib J. A. Studies of 9–β-D-arabinofuranosyladenine in man. Drug Metab. Dis-pos. 1973; 1: 756–759
  • Montgomery J. A., Clayton S. D., Shortnacy A. T. An improved procedure for the preparation of 9–β-D-wabinofuranosyl-2–fluoroadenine. J. Heterocyclic. Chem. 1979; 16: 157–160
  • Brockman R. W., Schabel F. M., Jr., Montgomery J. A. Biologic activity of 9–β-D-arabinofuranosyl-2–fluo-roadenine, a metabolically stable analog of 9–β-D-arabino-furanosyladenine. Biochem. Pharmacol. 1977; 26: 2193–2196
  • Warrell R. P., Berman E. Phase I and II study of fludarabine phosphate in leukemia: Therapeutic efficacy with delayed central nervous system toxicity. J. Clin. Oncol. 1986; 4: 74–79
  • Chun H. G., Leyland-Jones B. R., Caryk S. M., et al. Central nervous system toxicity of fludarabine phosphate. Cancer Treat. Rep. 1986; 70: 1225–1228
  • Spriggs D. R., Stopa E., Mayer R. J., et al. Fludarabine phosphate (NSC 312878) infusions for the treatment of acute leukemia: Phase I and neuropathological study. Cancer Res. 1986; 46: 5953–5958
  • Danhauser L., Plunkett W., Keating M., et al. 94–D-arabinofuranosyl-2–fluoroadenine 5′-monophosphate phar-macokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother. Pharmacol. 1986; 18: 145–152
  • Danhauser L., Plunkett W., Liliemark J., et al. Comparison between the plasma and intracellular pharmacology of 1–β-D-arabinofuranosylcytosine and 9–P-D-arabino-furanosyl-2–fluoroadenine 5′-monophosphate in patients with relapsed leukemia. Leukemia 1987; 1: 638–643
  • Kemena A., Gandhi V., Shewach D. S., et al. Inhibition of fludarabine metabolism by arabinosylcytosine during therapy. Cancer Chemother. Pharmacol. 1992; 31: 193–199
  • Keating M. J., Kantarjian H., Talpaz M., et al. Fludarabine therapy in chronic lymphocytic leukemia (CLL). Nouv. Rev. Fr. Hematol. 1988; 30: 461–466
  • Keating M. J., Kantarjian H., Talpaz M., et al. Fludarabine: A new agent with major activity against chronic lymphocytic leukemia. Blood 1989; 74: 19–25
  • Keating M. J., Kantarjian H., O'Brien S., et al. Fludarabine: A new agent with marked cytoreductive activity in untreated chronic lymphocytic leukemia. J. Clin. Oncol. 1991; 9: 44–49
  • Keating M. J., O'Brien S., Kantarjian H., et al. Long-term follow-up of patients with chronic lymphocytic leukemia treated with fludarabine as a single agent. Blood 1993; 81: 2878–2884
  • Grever M. R., Coltman C. A., Files J. C., et al. Fludarabine monophosphate in chronic lymphocytic leukemia. Blood 1986; 68: 223a
  • Grever M. R., Kopecky K. J., Coltman C. A., et al. Fludarabine monophosphate: A potentially useful agent in chronic lymphocytic leukemia. Nouv. Rev. Fr. Hematol. 1988; 30: 457–459
  • Puccio C. A., Mittelman A., Lichtman S. M., et al. A loading dose/continuous infusion schedule of fludarabine phosphate in chronic lymphocytic leukemia. J. Clin. Oncol. 1991; 9: 1562–1515
  • Kemena A., O-Brien S., Kantarjian H., et al. Phase II clinical trial of fludarabine in chronic lymphocytic leukemia on a weekly low-dose schedule. Leukemia and Lymphoma 1993; 10: 187–193
  • Robertson L. E., O-Brien S., Koller C., et al. Fludarabine in chronic lymphocytic leukemia: A phase II evaluation of a three day schedule. J. Clin. Oncol. 1993, submitted
  • Kemena A., Keating M. J., Plunkett W. Plasma and cellular bioavailability of oral fludarabine. Blood 1991; 78: 52a
  • Gandhi V., Kemena A., Keating M. J., et al. Cellular pharmacology of fludarabine triphosphate in chronic lymphocytic leukemia cells during fludarabine therapy. Leukemia and Lymphoma 1993; 10: 49–52
  • Huang P., Plunkett W. Action of 9–P-D-arabi-nofuranosyl-2–fluoroadenine on RNA metabolism. Mol. Pharmacol. 1991; 39: 449–455
  • Robertson L. E., Chubb S., Meyn R. E., et al. Induction of apoptotic cell death in chronic lymphocytic leukemia by 2–chloro-2′-deoxyadenosine and 9–β-D-arabinosyl-2–fluoroadenine. Blood 1993; 81: 143–150
  • Tseng WC., Derse D., Cheng YC. In vitro biological activity of 9–β-D-arabinofuranosyl-2–fluoroadenine and the biochemical actions of its triphosphate on DNA poly-merases and ribonucleotide reductase from HeLa cells. Mol. Pharmacol. 1982; 21: 474–417
  • White E. L., Shaddix S. C., Brockman R. W. Comparison of the actions of 9–β-D-arabinofuranosyl-2–fluo-roadenine and 9–β-D-arabinofuranosyladenine on target enzymes from mouse tumor cells. Cancer Res. 1982; 42: 2260–2264
  • Gandhi V., Plunkett W. Cell cycle specific metabolism of arabinosyl nucleosides in K562 human leukemia cells. Cancer Chemother. Pharmacol. 1992; 31: 11–17
  • Catapano C. V., Chandler K. B., Fernandes D. J. Inhibition of primer RNA formation in CCRF-CEM leukemia cells by fludarabine phosphate. Cancer Res. 1991; 51: 1829–1835
  • Catapano C. V., Perrino F. W., Fernandes D. J. Primer RNA chain termination induced by 9–β-D-arabinofur-anosyl-2–fluoroadenine 5′-triphosphate: A mechanism of DNA synthesis inhibition. J. Biol. Chem. 1993; 268: 7179–7185
  • Parker W. B., Bapat A. R., Shen JX., et al. Interaction of 2–halogenated dATP analogs (F, C1, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol. Pharmacol. 1988; 34: 485–491
  • Huang P., Chubb S., Plunkett W. Termination of DNA synthesis by 9–β-D-arabinofuranosyl-2–fluoroaden-ine. A mechanism for cytotoxicity. J. Biol. Chem. 1990; 265: 16617–16625
  • Kamiya K., Huang P., Plunkett W. Excision of incorporated fludarabine from DNA by human DNA poly-merase. Proc. Am. Assoc. Cancer Res. 1993; 34: 349
  • Yang SW., Huang P., Plunkett W., et al. Dual mode of inhibition of purified DNA ligase I from human cells by 9–β-D-arabinofuranosyl-2–fluoroadenine triphosphate. J. Biol. Chem. 1992; 267: 2345–2349
  • Gandhi V., Plunkett W. Modulation of arabinosyl nucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res. 1988; 48: 329–334
  • Plunkett W., Liliemark J., Adams T. M., et al. Saturation of 1–β-D-arabinosylcytosine 5′-triphosphate accumulation in leukemia cells during high-dose 1–β-D-arabinosyl-cytosine therapy. Cancer Res. 1987; 47: 3005–3011
  • Plunkett W., Liliemark J., Estey E., et al. Saturation of ara-CTP accumulation during high-dose ara-C therapy: Pharmacologic rationale for intermediate-dose ara-C. Semin. Oncol 1987; 14(Suppl. 1)159–166
  • Gandhi V., Estey E., Keating M. J., et al. Biochemical modulation of arabinosylcytosine for therapy of leukemias. Leukemia and Lymphoma 1993; 10(Suppl.)109–114
  • Gandhi V., Estey E., Keating M. J., et al. Fludarabine potentiates the metabolism of arabinosylcytosine in patients with acute myelogenous leukemia during therapy. J. Clin. Oncol. 1993; 11: 116–124
  • Estey E., Plunkett W., Gandhi V., et al. Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leukemia and Lymphoma 1993; 4: 343–350
  • Estey E., Gandhi V., Keating M. J., et al. G-CSF potentiates clinical and pharmacokinetic response to fludarabine and ara-C in AML and MDS. Proc. Am. Soc. Clin. Oncol. 1993; 12: 301
  • Gandhi V., Chapman A., Huang P., et al. Molecular mechanism of synergy of fludarabine and arabinosylcytosine therapy for acute myelogenous leukemia. Proc. Am. Assoc. Cancer Res. 1993; 34: 220
  • Feldman E., Gandhi V., Plunkett W., et al. Sequential administration of fludarabine, ara-C, and mitoxan-trone enhances topoisomerase II-DNA complex formation and has efficacy in acute leukemia. Blood 1992; 80(Suppl. l)208a
  • Robertson L. E., Kantarjian H., O'Brien S., et al. Cisplatin, fludarabine, and ara-C: A regimen for advanced fludarabine refractory chronic lymphocytic leukemia. Proc. Am. Soc. Clin. Oncol. 1993; 12: 308
  • Yang L. Y., Li L., Trujillo J. M., et al. Fludarabine synergizes cisplatin cytotoxicity in LoVo haman colon carcinoma cells by inhibiting repair of cisplatin-induced DNA damage. Proc. Am. Assoc. Cancer Res. 1993; 34: 347
  • Gregoire V., Hunter N., Milas L., et al. Enhancement of radiation response by fludarabine in murine tumor models. Proc. Am. Assoc. Cancer Res. 1992; 33: 85
  • Tafuri A., Andreeff M. Kinetic rationale for cy-tokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro. Leukemia 1991; 4: 826–834
  • Koistinen P., Wang C., Curtis J. E., et al. Granu-locyte-macrophage colony stimulating factor and interleuken-3 protect leukemic blast cells from ara-C toxicity. Leukemia 1991; 5: 789–795

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.