67
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Cytotoxicity of Cytokine-Induced Killer Cells Coated with Bispecific Antibody Against Acute Myeloid Leukemia Cells

, , , , &
Pages 219-229 | Published online: 01 Jul 2009

References

  • Yeager A. M., Kaizer H., Santos G. W., Saral R., Colvin O. M., Stuart R. K., Braine H. G., Burke P. J., Ambinder R. F., Burns W. H., Fuller D. J., Davis J. M., Karp J. E., May W. S., Rowley S. D., Sesenbrenner L. L., Vogelsang G. B., Wingard J. R. Autologous bone marrow transplantation with acute nonlymphocytic leukemia, using ex vivo marrow treatment with 4-hydroperox-ycyclophosphamide. N. Engl. J. Med. 1986; 315: 141–147
  • Gale R. P., Horowitz M. M., Butturini A. Autotransplants in acute leukaemia. Br. J. Haematol. 1991; 78: 135–137
  • Bortin M. M., Horowitz M. M., Rowlings P. A., Rimm A. A., Sobocinski K. A., Zhang M. J., Gale R. P., For the Advisory Committee of the International Bone Marrow Transplant Registry. 1993 Progress report from the International Bone Marrow Transplant Registry. Bone Marrow Transplant 1993; 12: 97–104
  • Higuchi C. M., Thompson J. A., Petersen F. B., Buckner C. D., Fefer A. Toxicity and immunomodulatory effects of interleukin-2 after autologous bone marrow transplantation for hematologic malignancies. Blood 1991; 77: 2561–2568
  • Fefer A., Benyunes M., Higuchi C., York A., Massumoto C., Lindgren C., Buckner C. D., Thompson J. A. Interleukin-2+lymphocytes as consolidative immunotherapy after autologous bone marrow transplantation for hematologic malignancies. Acta Haematol. 1993; 89: 2–7
  • Weisdorf D. J., Anderson P. M., Blazar B. R., Uckun F. M., Kersey J. H., Ramsay N. K. Transplantation 1993; 55: 61–66
  • Klingemann H. G. Trying to overcome residual disease after bone marrow transplantation for hematologic malignancies. Leukemia & Lymphoma 1992; 8: 421–429
  • Faber L. M., van Luxemburg-Heijs S. A. P., Willemze R., Falkenbug J. H. F. Generation of leukemia-reactive cytotoxic T lymphocyte clones from the HLA-identical bone marrow donor of a patient with leukemia. J. Exp. Med. 1992; 176: 1283–1289
  • Oshimi K., Oshimi Y., Motoji T., Kobayashi S., Mizoguchi H. Lysis of leukemia and lymphoma cells by autologous and allogeneic interferon-activated blood mononuclear cells. Blood 1985; 61: 790–798
  • Oshimi K., Oshimi Y., Akutsu M., Takei Y., Saito H., Okada M., Mizoguchi H. Cytotoxicity of interleukin 2-activated lymphocytes for leukemia and lymphoma cells. Blood 1986; 68: 938–948
  • Lotzova E., Savary C. A., Herberman R. B. Induction of NK cell activity against fresh human leukemia in culture with interleukin-2. J. Immunol. 1987; 138: 2718–2727
  • Fierro M. T., Liao X.-S., Lusso P., Bonferroni M., Ma-Tera L., Cesano A., Lista P., Arione R., Forni G., Foa R. In vitro and in vivo susceptibility of human leukemic cells to lymphokine activated killer activity. Leukemia 1988; 2: 50–54
  • Alder A., Chervenick P. A., Whiteside T. L., Lotzova E., Herberman R. B. Interleukin 2 induction of lymphokine-activated killer (LAIC) activity in the peripheral blood and bone marrow of acute leukemia patients. I. Feasibility of LAK generation in adult patients with active disease and in remission. Blood 1988; 71: 709–716
  • Tahara T., Iseki R., Morishima Y., Yokomaku S., Ohno R., Saito H. Generation and characterization of lymphokine-activated killer cells against fresh human leukemia cells. Jpn. J. Cancer Res. 1988; 79: 390–399
  • Archimbaud E., Bailly M., Dore J.-F. Inducibility of lymphokine activated killer (LAK) cells in patients with acute myelogenous leukaemia in complete remission and its clinical relevance. Br. J. Haematol. 1991; 77: 328–334
  • Oshimi K., Oshimi Y., Satake M., Mizoguchi H. Natural-killer mediated lysis of normal and malignant target cells, and its regulation by monocytes. J. Exp. Med. 1985; 162: 472–486
  • Rosenberg S. A., Lotze M. T., Mule J. J. New approaches to the immunotherapy of cancer using interleukin-2. Ann. Int. Med. 1988; 108: 853–864
  • Benyunes M. C., Massumoto C., York A., Higuchi C. M., Buckner C. D., Thompson J. A., Petersen F. B., Fefer A. Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 1993; 12: 159–163
  • Gaynor E. R., Vitek L., Sticklin L., Creekmore S. P., Ferraro M. E., Thomas J. X., Fisher S. G., Fisher R. I. The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann. Int. Med. 1988; 109: 953–958
  • Isner J. M., Dietz W. A. Cardiovascular consequences of recombinant DNA technology: Interleukin-2. Ann. Int. Med. 1988; 109: 933–935
  • Lee R. E., Lotze M. T., Skibber J. M., Tucher E., Bonow R. O., Ognibene F. P., Carrasquillo J. A., Shelhamer J. H., Parrillo J. E., Rosenberg S. A. Cardiorespiratory effects of immunotherapy with interleukin-2. J. Clin. Oncol. 1989; 7: 7–20
  • Ettinghausen S. E., Moore J. G., White D. E., Platanias L., Young N. S., Rosenberg S. A. Hematologic effects of immunotherapy with lymphokine-activated killer cells and recombinant interleukin-2 in cancer patients. Blood 1987; 69: 1654–1660
  • Lotzova E. Role of interleukin-2 activated MHC-non-restricted lymphocytes in antileukemia activity and therapy. Leukemia & Lymphoma 1992; 7: 15–28
  • Jung G., Eberhard H. J. M. An in vitro model for tumor immunotherapy with antibody heteroconjugates. Immunol. Today 1988; 9: 257–260
  • Songsivilai S., Lachmann P. J. Bispecific antibody: a tool for diagnosis and treatment of disease. Clin. Exp. Immunol. 1990; 79: 315–321
  • Bolhuis R. L. H., Sturm E., Braakman E. T cell targeting in cancer therapy. Cancer Immunol. Immunother. 1991; 34: 1–8
  • Nitta T., Sato K., Yagita H., Okumura K. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 1990; 335: 368–371
  • Oshimi K., Seto T., Oshimi Y., Masuda M., Okumura K., Mizoguchi H. Increased lysis of patient CD10-positive leukemic cells by T cells coated with anti-CD3 Fab' antibody cross-linked to anti-CD 10 Fab' antibody. Blood 1991; 77: 1044–1049
  • Kaneko T., Fusauchi Y., Kakui Y., Masuda M., Akahoshi M., Teramura M., Motoji T., Okumura K., Mizoguchi H., Oshimi K. A bispecific antibody enhances cytokine-induced killer-mediated cytolysis of autologous acute myeloid leukemia cells. Blood 1993; 81: 1333–1341
  • Haagen I. A., van de Griend R., Clark M., Geerars A., Bast B., de Gast B. Killing of human leukaemia/lymphoma B cells by activated cytotoxic T lymphocytes in the presence of a bispecific monoclonal antibody (αCD3/αCD19). Clin. Exp. Immunol. 1992; 90: 368–375
  • Anderson P. M., Crist W., Hasz D., Carroll A. J., Myers D. E., Uckun F. M. G 19.4 (aCD3) x B43 (aCD19) monoclonal antibody heteroconjugate triggers CD 19 antigen-specific lysis of t(4:11) acute lymphoblastic leukemia cells by activated CD3 antigen-positive cytotoxic T cells. Blood 1992; 80: 2826–2934
  • Nitta T., Yagita H., Azuma T., Sato K., Okumura K. Bispecific F(ab')2 monomer prepared with anti-CD3 and anti-tumor monoclonal antibodies is most potent in induction of cytolysis of human T cells. Eur. J. Immunol. 1989; 19: 1437–1441
  • Nitta T., Sato K., Okumura K., Ishii S. Induction of cytotoxicity in human T cells coated with anti-glioma X anti-CD3 bispecific antibody against human glioma cells. J. Neurosurg. 1990; 72: 476–481
  • Burke F., Naylor M. S., Davies B., Balkwill F. Cytokine wall chart. Immunol. Today 1993; 14: 167–170
  • Aggarwal B. B., Gutterman J. U. Human Cytokines. Handbook for basic and clinical research. Blachwell Scientific Publications. 1992
  • Ochoa A. C., Gromo G., Alter B. J., Sondel P. M., Bach F. H. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, β-IL 1, interferon-γ and β1. J. Immunol. 1987; 138: 2728–2733
  • Anderson P. M., Ochoa A. C., Ramsay N. K. C., Hasz D., Weisdorf D. Anti-CD3 + interleukin-2 stimulation of marrow and blood: comparison of proliferation and cytotoxicity. Blood 1992; 80: 1846–1853
  • Kaufmann Y., Davidson J., Levanon M., Icekson I., Revel M., Ramot B. Lymphokine-activated killer (LAK) cells: Interferon-g synergizes with interleukin-2 to induce LAK cytotoxicity in homogeneous leukemic preparations. Clin. Immunol. Immunopath. 1991; 58: 278–288
  • Schmidt-Wolf I. G. H., Negrin R. S., Kiem H.-P., Blume K. G., Weissman I. L. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J. Exp. Med. 1991; 174: 139–149
  • Teichmann J. V., Ludwig W.-D., Thiel E. Cytotoxicity of interleukin 2-induced lymphokine-activated killer (LAK) cells against human leukemia and augmentation of killing by interferons and tumor necrosis factor. Leuk. Res. 1992; 16: 287–298
  • Stotter H., Custer M. C., Bolton E. S., Guedez L., Lotze M. T. IL-7 induces human lymphokine-activated killer cell activity and is regulated by IL-4. J. Immunol. 1991; 146: 150–155
  • Hickman C. J., Crim J. A., Mostowski H. S., Siegel J. P. Regulation of human cytotoxic T lymphocyte development by IL-7. J. Immunol. 1990; 145: 2415–2420
  • Alderson M. R., Sassenfeld H. M., Widmer M. B. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J. Exp. Med. 1990; 172: 577–587
  • Smyth M. J., Norihisa Y., Gerard J. R., Young H. A., Ortardo J. R. IL-7 regulation of cytotoxic lymphocytes: pore-forming protein gene expression, interferon-γ production, and cytotoxicity of human peripheral blood lymphocyte subsets. Cell. Immunol. 1991; 138: 390–403
  • Welch P. A., Namen A. E., Goodwin R. G., Armitage R., Cooper M. D. Human IL-7: A novel T cell growth factor. J. Immunol. 1989; 143: 3562–3567
  • Teichmann J. V., Ludwig W.-D., Thiel E. Susceptibility of human leukemia to allogeneic and autologous lymphokine-activated killer cell activity: Analysis of 252 samples. Nat. Immun. 1992; 11: 117–132
  • Teichmann J. V., Ludwig W.-D., Thiel E. GM-CSF-mediated proliferation induction improves the susceptibility of leukemia cells to lymphokine-activated killer cells. Int. J. Haematol. 1992; 55: 255–264
  • Cesano A., Lista P., Bellone G., Geuna M., Brizzi M. F., Rossi P. R., Pegoraro L., Oberholtzer E., Matera L. Effect of human interleukin-3 on the susceptibility of fresh leukemia cells to interleukin-2-induced lymphokine activated killing activity. Leukemia 1992; 6: 567–573
  • Palucka A. K., Porwit A., Reizenstein P. Resistance of leukemia blasts to lymphokine activated killer (LAK)-mediated cytotoxicity is not related to their adhesion properties. Eur. J. Haematol. 1991; 47: 123–127
  • Palucka A. K., Porwit A., Reizenstein P. A supportive role of neural cell adhesion molecule (NCAM) in adhesion between leukaemic blasts and cytotoxic lymphocytes. Scand. J. Immunol. 1992; 35: 399–406
  • Archimbaud E., Thomas X., Campos L., Fiere D., Dore J.-F. Susceptibility of acute myelogeneous leukemia blasts to lysis by lymphokine-activated killer (LAK) cells and its clinical relevance. Leuk. Res. 1992; 16: 673–680
  • Oblakowski P., Bello-Femandez C., Reittie J. E., Heslop H. E., Galatowicz G., Veys P., Wilkes S., Prentice H. G., Hazlehurst G., Hoffbrand A. V., Brenner M. K. Possible mechanism of selective killing of myeloid leukemic blast cells by lymphokine-activated killer cells. Blood 1991; 77: 1996–2001
  • Allavene P., Grandi M., D'Incalci M., Geri O., Giuliani F. C., Mantovani. A. Int. J. Cancer, 40: 104–107
  • Harker W. G., Tom C., McGregor J. R., Slade L., Samlowski W. E. Human tumor cell line resistance to chemotherapeutic agent does not predict resistance to natural killer of lymphokine-activated killer cell-mediated cytolysis. Cancer Res. 1990; 50: 5931–5936
  • Gerlach J. H., Kartner N., Bell D. R., Ling V. Multidrug resistance. Cancer Sur. 1986; 5: 25–46
  • Treichel R. S., Olken S. The relationship between multi-drug resistance and resistance to natural-killer-cell and lymphokine-activated killer-cell lysis in human leukemic cell lines. Int. J. Cancer 1992; 50: 305–310
  • Dupuis M. L., Romani C., Yassen A., Samogia P., Tombesi M., Caserta M., Cianfriglia M. The over expression of P-glycoprotein in K-562 and DAUDI cells, is associated with a high susceptibility to NK and LAK cells. J. Biol. Regul. Homeost. Agents 1991; 5: 137–141
  • Dupuis M. L., Ramoni C., Yassen A., Samoggia P., Tombesi M., Caserta M., Cianfriglia M. The over-expression of P-glycoprotein in K-562 and Daudi cells, is associated with a high susceptibility to NK and LAK cells. J. Biol. Regul. Homeost. Agents 1991; 5: 137–141
  • Arienti F., Gambacorti-Passerini C., Borin L., Rivoltini L., Orazi A., Pogliani E. M., Corneo G., Parmiani G. Increased susceptibility to lymphokine activated killer (LAK) lysis of relapsing vs. newly diagnosed acute leukemia cells without changes in drug resistance or in the expression of adhesion molecules. Ann. Oncol. 1992; 3: 155–162
  • Filgueira L., Zuber M., Juretic A., Luscher U., Caetano V., Harder F., Garotta G., Heberer M., Spagnoli G. C. Differential effects of interleukin-2 and CD3 triggering on cytokine gene transcription and secretion in cultured tumor infiltrating lymphocytes. Cell. Immunol. 1993; 150: 205–218
  • Oshimi K., Oshimi Y., Saito H., Mizoguchi H. Cytotoxicity of interleukin-2-activated lymphocytes for autologous normal blood mononuclear cells. J. Immunol. Methods 1988; 109: 161–168
  • Robertson M. J., Manley T. J., Donahue C., Levine H., Ritz J. Costimulatory signals are required for optimal proliferation of human natural killer cells. J. Immunol. 1993; 150: 1705–1714

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.