100
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Detection of Chromosomal Translocations :in Leukemia-Lymphoma Cells by Polymerase Chain Reaction

, &
Pages 359-380 | Received 30 Dec 1994, Published online: 01 Jul 2009

References

  • Rabbitts T. H., Behm T. Structural anti functional chimerism results from chromosomal translocation in lymphoid tumors. Adv. Immunol. 1991; 50: 119–146
  • Boxer L. M. The role of oncogenes in hematologic malignancies. Annu. Rev. Med. 1994; 45: 1–11
  • Cline M. J. The molecular basis of leukemia. N. Engl. J. Med. 1994; 330: 328–336
  • Bishop J. M. Molecular themes in oncogenesis. Cell 1991; 64: 235–248
  • Hunter T. Cooperation between oncogenes. Cell 1991; 64: 249–270
  • Weinberg R. A. Tumor suppressor genes. Science 1991; 254: 1138–1146
  • Cleary M. L. Oncogenic conversion of transcription factors by chromosomal translocations. Cell 1991; 66: 619–622
  • Rabbitts T. H. Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 1991; 67: 641–644
  • Solomon E., Borrow J., Goddard A. D. Chromosome aberrations and cancer. Science 1991; 254: 1153–1160
  • Gauwerky C. E., Croce C. M. Chromosomal translocations in leukaemia. Semin. Cancer Biol. 1993; 4: 333–340
  • Hunger S. P., Cleary M. L. Chimaeric oncoproteins resulting from chromosomal translocations in acute lymphoblastic leukaemia. Semin. Cancer Biol. 1993; 4: 387–399
  • Korsmeyer S. J. Bcl-2 initiates a new category of onco-genes: Regulators of cell death. Blood 1992; 80: 879–886
  • Sánchez-Garcia I., Rabbitts T. H. LIM domain proteins in leukaemia and development. Semin. Cancer Biol. 1993; 4: 349–358
  • Boehm T., Rabbitts T. H. The human T cell receptor genes are targets for chromosomal abnormalities in T cell tumors. FASEB J. 1989; 3: 2344–2359
  • Cory S. Activation of cellular oncogenes in hematopoietic cells by chromosome translocation. Adv. Cancer Res. 1986; 47: 189–234
  • Korsmeyer S. J. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu. Rev. Immunol. 1992; 10: 785–807
  • Baron B. W., Nucifora G., McCabe N., Espinosa R., III, Le Beau M. M., McKeithan T. W. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32)and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl. Acad. Sci. USA. 1993; 90: 5262–5266
  • Kerckaert J. P., Deweindt C., Tilly H., Quief S., Lecocq G., Bastard C. LAZ3, a novel zinc-finger encoded gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet. 1993; 5: 66–70
  • Miki T., Kawamata N., Arai A., Ohashi K., Nakamura Y., Kato A, Hirosawa S., Aoki N. Molecular cloning of the breakpoint for 3q27 translocation in B-cell lymphomas and leukemias. Blood 1994; 83: 217–222
  • Ye B. H., Lista F., Lo Coco F., Knowles D. M., Offit K., Chaganti R. S. K., Dalla-Favera R. Alterations of a zinc-finger encoding gene, BCL6, in diffuse large-cell lymphoma. Science 1993; 262: 747–750
  • Ye B. H., Rao P. H., Chaganti R. S. K., Dalla-Favera R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res. 1993; 53: 2732–2735
  • Grimaldi J. C., Meeker T. C. The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 1989; 73: 2081–2085
  • Dalla-Favera R., Bregni M., Erikson J., Patterson D., Gallo R. C., Croce C. M. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 1982; 79: 7824–7827
  • Taub R., Kirsch I., Morton C., Lenoir G., Swan D., Tronick S., Aaronson S., Leder P. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytomacells. Proc. Natl. Acad. Sci. USA 1982; 79: 7837–7841
  • Croce C. M., Nowell P. C. Molecular basis of human B cell neoplasia. Blood 1985; 65: 1–7
  • Gauwerky C. E., Huebner K., Isobe M., Nowell P. C., Croce C. M. Activation of MYC in a masked t(8; 17) translocation results in an aggressive B-cell leukemia. Proc. Natl. Acad. Sci. USA 1989; 86: 8867–8871
  • Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J. M. Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma. Proc. Natl. Acad. Sci. USA 1989; 86: 3257–3260
  • Neri A., Chang C. C., Lombardi L., Salina M., Corradini P., Maiolo A. T., Chaganti R. S. K., Dalla-Favera R. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homoglous to NF-κB p50. Cell 1991; 67: 1075–1087
  • Tsujimoto Y., Yunis J., Onorato-Showe L., Erikson J., Nowell P. C., Croce C. M. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 1984; 224: 1403–1406
  • Tsujimoto Y., Jaffe E., Cossman J., Gorham J., Nowell P. C., Croce C. M. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 1985; 315: 340–343
  • Motokura T., Bloom T., Kim H. G., Juppner H., Ruderman J. V., Kronenberg H. M., Arnold A. A novel cyclin encoded by a bcl I-linked candidate oncogene. Nature 1991; 350: 512–515
  • Withers D. A., Harvey R. C., Faust J. B., Melnyk O., Carey K., Meeker T. C. Characterization of a candidate bcl-1 gene. Mol. Cell. Biol. 1991; 11: 4846–4853
  • Rosenberg C. L., Wong E., Petty E. M., Bale A. E., Tsujimoto Y., Harris N. L., Arnold A. PRAD1, a candidate BCL1 oncogene: Mapping and expression in centrocytic lymphoma. Proc. Natl. Acad. Sci. USA 1991; 88: 9638–9642
  • Raffeld M., Jaffe E. bcl-1, t(11;14), and mantle cell-derived lymphomas. Blood 1991; 78: 259–263
  • Akao Y., Seto M., Takahashi T., Kubonishi I., Miyoshi I., Nakazawa S., Tsujimoto Y., Croce C. M., Ueda R. Molecular cloning of the chromosomal breakpoint of a B-cell lymphoma with the t(11;14)(q23;q32) translocation. Cancer Res. 1991; 51: 1574–1576
  • Lu D., Yunis J. J. Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acid Res. 1992; 20: 1967–1972
  • Tsujimoto Y., Finger L. R., Yunis J., Nowell P. C., Croce C. M. Cloning of the chromosome breakpoint of neoplas-tic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099
  • Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906
  • Cleary M. L., Sklar J. Nucleotide sequence of a t(14; 18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. USA 1985; 82: 7439–7443
  • Korsmeyer S. J., Shutter J. R., Veis D. J., Merry D. E., Oltvai Z. N. Bcl-2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol. 1993; 4: 327–332
  • Rimokh R., Gadoux M., Berthéas M. F., Berger F., Garoscio M., Deléage G., Germain D., Magaud J. P. FVT-I, a novel human transcription unit affected by variant translocation t(2;18)(p11;q21) of follicular lymphoma. Blood 1993; 81: 136–142
  • McKeithan T. W., Rowley J. D., Shows T. B., Diaz M. O. Cloning of the chromosome translocation breakpoint junction of the t(14; 19) in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 1987; 84: 9257–9260
  • Ohno H., Takimoto G., McKeithan T. W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 1990; 60: 991–997
  • Tycko B., Smith S. D., Sklar J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J. Exp. Med. 1991; 174: 867–873
  • Begley C. G., Aplan P. D., Davey M. P., Nakahara K., Tchorz K., Kurtzberg J., Hershfield M. S., Haynes B. F., Cohen D. I., Waldmann T. A., Kirsch I. R. Chromosomal translocation in a human leukemic stem-cell line disriupts the T-cell antigen receptor δ-chain diversity region and results, in a previously unreported fusion transcript. Proc. Natl. Acad. Sci. USA 1989; 86: 2031–2035
  • Brown L., Cheng J. T., Chen Q., Siciliano M. J., Crist W., Buchanan G., Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990; 9: 3343–3351
  • Finger L. B., Kagan J., Christopher G., Kurtzberg J., Hershfield M. S., Nowell P. C., Croce C. M. Involvement of the TCL5 gene on chromosome 1 in T-cell leukemia and melanoma. Proc. Natl. Acad. Sci. USA 1989; 86: 5039–5043
  • Fitzgerald T. J., Neale G. A. M., Raimondi S. C., Goorha R. M. c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-β chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood 1991; 78: 2686–2695
  • Aplan P. D., Raimondi S. C., Kirsch I. R. Disruption of the SCL gene by a t(1;3) translocation in a patient with T cell acute lymphoblastic leukemia. J. Exp. Med. 1992; 176: 1303–1310
  • Baer R. TAL1, TAL2 and LYL1: A family of basic helix-loop-helix proteins implicated in T cell mute leukaemia. Semin. Cancer Biol. 1993; 4: 341–347
  • Xia Y., Brown L., Yang C. Y. C., Tsan J. T., Siciliano M., Espinosa R., III, Le Beau M. M., Baer R. J. TAL2, a helix-loop-helix gene activated by the (7;9(q34;q32) translocation in human T-cell leukemia. Proc. Natl. Acad. Sci. USA 1991; 88: 11416–11420
  • Reynolds T. C., Smith S. D., Sklar J. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the β T cell receptor gene in human lymphoblastic neoplasms. Cell 1987; 50: 107–117
  • Tycko B., Reynolds T. C., Smith S. D., Sklar J. Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia. J. Exp. Med. 1989; 169: 369–377
  • Ellisen L. W., Bird J., West D. C., Soreng A. L., Reynolds T. C., Smith S. D., Sklar J. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661
  • Cleary M. L., Mellentin J. D., Spies J., Smith S. D. Chromosomal translocation involving the β T cell receptor gene in acute leukemia. J. Exp. Med. 1988; 167: 682–687
  • Mellentin J. D., Smith S. D., Cleary M. L. lyl-l, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989; 58: 77–83
  • McKeithan T. W., Shima E. A., Le Beau M. M., Minowada J., Rowley J. D., Diaz M. O. Molecular cloning of the breakpoint junction of a human chromosomal 8; 14 translocation involving the T-cell receptor α-chain gene and sequences on the 3′ side of. MYC. Proc. Natl. Acad. Sci. USA 1986; 83: 6636–6640
  • Finger L. R., Huebner K., Cannizzaro L. A., McLeod K., Nowell P. C., Croce C. M. Chromosomal translocation in T-cell leukemia line HUT 78 results in a MYC fusion transcript. Proc. Natl. Acad. Sci. USA 1988; 85: 9158–9162
  • Zutter M., Hockett R. D., Roberts C. W. M., McGuire E. A., Bloomstone J., Morton C. C., Deaven L. L., Crist W. M., Carroll A. J., Korsmeyer S. J. The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the y T-cell receptor with TCL3, a conserved and activated locus at 10q24. Proc. Natl. Acad. Sci. USA 1990; 87: 3161–3165
  • Hatano M., Roberts C. W. M., Minden M., Crist W. M., Korsmeyer S. J. Deregulation of a homeobox gene, hox11, by the t(10; 14) in T cell leukemia. Science 1991; 253: 79–82
  • Kennedy M. A., Gonzalez-Sarmiento R., Kees U. R., Lampert F., Dear N., Boehm T., Rabbitts T. H. HOX11, a home-obox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl. Acad. Sci. USA. 1991; 88: 8900–8904
  • Dear T. N., Sanchez-Garcia I., Rabbitts T. H. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to adistinct family of homeobox genes. Proc. Natl. Acad. Sci. USA 1993; 90: 4431–4435
  • McGuire E. A., Hockett R. D., Pollock K. M., Rartholdi M. F., O'Brien S. J., Korsmeyer S. J. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-l, a gene encoding a potential zinc finger protein. Mol. Cell. Biol. 1989; 9: 2124–2132
  • Boehm T., Foroni L., Kaneko Y., Perutz M. F., Rabbitts T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: Distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc. Natl. Acad. Sci. USA 1991; 88: 4367–4371
  • Royer-Pokora B., Loos U., Ludwig W. D. TTG-2, a new gene encoding a c:ysteine-rich protein with, the: LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 1991; 6: 1887–1883
  • Baer R., Chen K. C., Smith S. D., Rabbitts T. H. Fusion of an immunoglobulin variable gene and a T cell receptor constant gene in the chromosome 14 inversion associated with T cell tumors. Cell 1985; 43: 705–713
  • Croce C. M., Isobe M., Palumbo A., Puck J., Ming J., Tweardy D., Erikson J., Davis M., Rovera G. Gene for α-chain of human T-cell receptor: Location on chromosome 14 region involved in T-cell neoplasms. Science 1985; 227: 1044–1047
  • Denny C. T., Yoshikaii Y., Mak T. W., Smith S. D., Hollis G. F., Kirsch I. R. A chromosome 14 inversion in a T-cell lymphoma is caused by site-specific recombination between irnmunoglobulin and T-cell receptor loci. Nature 1986; 320: 549–551
  • Davey M. P., Bertness V., Nakahara K., Johnson J. P., McBride O. W., Waldmann T. A., Kirsch I. R. Juxtaposition of the T-cell receptor α-chain locus (14q11) and a region (14q32) of potential importance in leukemogenesis by a 14;1.4 translocation in a patient with T-cell chronic lymphocytic leukemia and ataxia-telangiectasia. Proc. Natl. Acad. Sci. USA 1981b; 85: 9287–9291
  • Russo G., Isobe M., Pegoraro L., Finan J., Nowell P. C., Croce C. M. Molecular analysis of a t(7; 14)(q35;q32) chromosome translocation in a T cell leukemia of a patient with ataxia telangiectasia. Cell 1988; 53: 137–144
  • Stern M. H., Soulier I., Rosenzwajg M., Nakahara K., Canki-Klain N., Aurias A., Sigaux F., Kirsch I. R. MTCP-1: A novel gene on the human chromosome Xq28 translocated to the T cell receptor α/γ locus in mature T cell proliferations. Oncogene 1993; 8: 2475–2483
  • Thick J., Mak Y. F., Metcalfe J., Beatty D., Taylor A. M. R. A gene on chromosome Xq28 associalted wi th T-cell pro-lymphocytic leukemia iin two patients with ataxia telangiectasia. Leukemia 1994; 8: 564–573
  • Cimino G., Moir D. T., Canaani O., Williams K., Crist W. M., Katzav S., Cannizzaro L., Lange B., Nowell P. C., Croce C. M., Canaani E. Cloning of ALL-l, the locus involved in leukemias with the t(4;11)(q21:q23), t(9;11)(p22:q23), and t(11;19)(q23:p13) chromosome translocations. Cancer Res. 1991; 51: 6712–6714
  • Ziemin-van der Poel S., McCabe N. R., Gill H. I., Espinosa R., III, Patel Y., Harden A., Rubinelli P., Smith S. D., Le Beau M. M., Rowley J. D., Diaz M. O. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocalions associated with human leukemias. Proc. Natl. Acad. Sci. USA 1991; 88: 10735–10739
  • Djabali M., Selleri L., Parry P., Bower M., Young B. D., Evans G. A. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 1992; 2: 113–118
  • McCabe N. R., Burnett R. C., Gill H. J., Thirman M. J., Mbangkollo D., Kipiniak M., van Melle E., Ziemin-van der Poel S., Rowley J. D., Diaz M. O. Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 transllocations. Proc. Natl. Acad. Sci. USA 1992; 89: 11794–11798
  • Parry P., Djabali M., Bower M., Khristich J., Waterman M., Gibbons B., Young B. D., Evans G. Structure and expression of the human trithorax-like gene 1 involved in acute leukemias. Proc. Natl. Acad. Sci. USA 1993; 90: 4738–4742
  • Rowley J. D. Rearrangements involving chromosome band 11q23 in acute leukaemia. Semin. Cancer Biol. 1993; 4: 377–385
  • Bernard O. A., Mauchauffe M., Mecucci C., Van den Berghe H., Berger R. A novel gene, AF-1p, fused to HRX in t(1; 11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 1994; 9: 1039–1045
  • Mellentin J. D., Murre C., Donlon T. A., McCaw P. S., Smith S. D., Carroll A. J., McDonald M. E., Baltimore D., Cleary M. L. The gene for enhancer binding proteins E12/E47 lies at the (1;19) breakpoint in acute leukemias. Science 1989; 246: 379–382
  • Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990; 60: 547–555
  • Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990; 60: 535–545
  • Bullrich F., Morris S. W., Hummel M., Pileri S., Stein H., Croce C. M. Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res. 1994; 54: 2873–2877
  • Morris S. W., Kirstein M. N., Valentine M. B., Dittmer K. G., Shapiro D. N., Saltman D. L., Look A. T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284
  • Fichelson S., Dreyfus F., Berger R., Melle J., Bastard C., Miclea J. M., Gisselbrecht S. Evi-1 expression in leukemic patients with rearrangements of the 3Q25-Q28 chromosomal region. Leukemia 1992; 6: 93–99
  • Morishita K., Parganas E., Willman C. L., Whittaker M. H., Drabkin H., Oval J., Taetle R., Valentine M. B., Ihle J. N. Activation of EVII gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc. Natl. Acad. Sci. USA 1992; 89: 3937–3941
  • Levy E. R., Parganas E., Morishita K., Fichelson S., James L., Oscier D., Gisselbrecht S., Ihle J. N., Buckle V. J. DNA rearrangements proximal to the EVII locus associated with the 3q21q26 syndrome. Blood 1994; 83: 1348–1354
  • Yoneda N., Look A. T., Kirstein M. N., Valentine M. B., Raimondi S. C., Civin C. I., Ravindranath Y., Morris S. W. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene. Blood 1994; 84: 440a
  • Nucifora G., Birn D. J., Espinosa R., III, Erickson P., Le Beau M. M., Roulston D., McKeithan T. W., Drabkin H., Rowley J. D. Involvement of the AML1 gene in the (3;21) in therapy-related leukemia and in chronic myeloid leukemia in blast crisis. Blood 1993; 81: 2728–2734
  • Nucifora G., Begy C. R., Erickson P., Drabkin H. A., Rowley J. D. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1. Proc. Natl. Acad. Sci. USA 1993; 90: 7784–7788
  • Nucifora G., Begy C. R., Kobayashi H., Roulston D., Claxton D., Pedersen-Bjergaard J., Parganas E., Ihle J. N., Rowley J. D. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl. Acad. Sci. USA 1994; 91: 4004–4008
  • Nucifora G., Rowley J. D. The AML1 and ETO genes in acute myeloid leukemia with a t(8;21). Leukemia Lymphoma 1994; 14: 353–362
  • Mitani K., Ogawa S., Tanaka T., Miyoshi H., Kurokawa M., Mano H., Yazaki Y., Ohki M., Hirai H. Generation of the AMLI-EVI-I fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 1994; 13: 504–510
  • Gu Y., Nakamura T., Alder H., Prasas R., Canaani O., Cimino G., Croce C. M., Canaani E. The t(4; 11) chromosome translocation of human acute leukemia fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708
  • Morrissey J., Tkachuk D. C., Milatovich A., Francke U., Link M., Cleary M. L. A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias. Blood 1993; 81: 1124–1131
  • Domer P. H., Fakharzadeh S. S., Chen C. S., Jockel J., Johansen L., Silverman G. A., Kersey J. H., Korsmeyer S. J. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc. Natl. Acad. Sci. USA 1993; 90: 7884–7888
  • Hilden J. M., Kersey J. H. The MLL (11q23) and AF-4 (4q21) genes disrupted in t(4; 11) acute leukemia: Molecular and clinical studies. Leukemia Lymphoma 1994; 14: 189–195
  • Golub T. R., Barker G. F., Lovett M., Gilliland D. G. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316
  • Redner R. L., Rush E. A., Faas S., Rudert W. A., Corey S. J. The t(5; 17) translocation in acute promyelocytic leukemia generates a nucleophosmin-RARa fusion transcript. Blood 1994; 84: 375a
  • von Lindern M., Poustka A., Lerach H., Grosveld G. The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol. Cell. Biol. 1990; 10: 4016–4026
  • von Lindern M., Fornerod M., van Baal S., Jaegle M., De Wit T., Buijs A., Grosveld G. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek, can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol. Cell. Biol. 1992; 12: 1687–1697
  • von Lindern M., van Baal S., Wiegant J., Raap A., Hagemeijer A., Grosveld G. can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Mol. Cell. Biol. 1992; 12: 3346–3355
  • Soekarman D., von Lindern M., Daenen S., De Jong B., Fonatsch C., Heinze B., Bartram C., Hagemeijer A., Grosveld G. The translocation (6;9)(p23;q34) shows consistent rearrangements of two genes and defines a myeloproliferative disorder with specific clinical features. Blood 1992; 79: 2990–2997
  • Soekarman D., von Lindern M., van der Plas D. C., Selleri L., Bartram C. R. I., Martiat P., Culligan D., Padua R. A., Hasper-Voogt K. P., Hagemeijer A., Grosveld G. Dek-Can rearrangement in translocation (6;9)(p23;q34). Leukemia 1992; 6: 489–494
  • Prasad R., Gu Y., Alder H., Nakamura T., Canaani O., Saito H., Huebner K., Gale R. P., Nowell P. C., Kuriyama K., Miyazaki Y., Croce C. M., Canaani E. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with t(6;1 1) chromosome translocation. Cancer Res. 1993; 53: 5624–5628
  • Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 1991; 88: 10431–10434
  • Miyoshi H., Kozu T., Shimizu K., Enomoto K., Maseki N., Kaneko Y., Kamada N., Ohki M. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 1993; 12: 2715–2721
  • Erickson P., Gao J., Chang K. S., Look T., Whisenant E., Raimondi S., Lasher R., Trujillo J., Rowley J., Drabkin H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AMLf1ETO, with similarity to Drosophila segmentation gene. runt. Blood 1992; 80: 1825–1831
  • Ohki M. Molecular basis of the t(8;21) translocation in acute myeloid leukaemia. Semin. Cancer Biol. 1993; 4: 369–375
  • Tighe J. E., Daga A., Calabi F. Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8;21) of acute myeloid leukemia. Blood 1993; 81: 592–596
  • Nakamura T., Alder H., Gu Y., Prasad R., Canaani O., Kamada N., Gale R. P., Lange B., Crist W. M., Nowell P. C., Croce C. M., Canaani E. Genes on chromosomes 4, 9 and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc. Natl. Acad. Sci. USA 1993; 90: 4631–4635
  • De Klein A., Geurts van Kessel A., Grosveld G., Bartram C. R., Hagemejier A., Bootsma D., Spurr N. K., Heisterkamp N., Groffen J., Stephenson J. R. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelo-cytic leukaemia. Nature 1982; 300: 765–767
  • Heisterkamp N., Stephenson J. R., Groffen J., Hansen P. F., De Klein A., Bartram C. R., Grosveld G. Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature 1983; 306: 239–242
  • Groffen J., Stephenson J. R., Heisterkamp N., De Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36: 93–99
  • Shtivelman E., Lifshitz B., Gale R. P., Canaani E. Fused transcript of abl, bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554
  • Ben-Neriah Y., Daley G. Q., Mes-Masson A. M., Witte O. N., Baltimore D. The chronic myelogenous leukemia-specific p210 protein is the product of the bcr/abl hybridgene. Science 1986; 233: 212–214
  • Hermans A., Heisterkamp N., von Lindern M., van Baal S., Meijer D., van der Plas D., Wiedeman L. M., Groffen J., Bootsma D., Grosveld G. Unique fusion of bcr and c-abl genes in Philadelphia chromosome-positive acute lym-phoblastic leukemia. Cell 1987; 51: 33–40
  • Kurzrock R., Gutterman J. K., Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemia. N. Engl. J. Med. 1988; 319: 990–998
  • Ayton P., Bernard O. A., Chaplin T., Saha V., Della Valle V., Hillion J., Gregorini A., Lillington D., Berger R., Young B. D. Molecular cloning of the gene (AF10) involved in the t(10;11)(p12;q23) translocation in acute leukaemia reveals a new class of conserved zinc fingdleucine zipper proteins. Blood 1994; 84: 230a
  • Chen Z., Brand N. J., Chen A., Chen S. J., Tong J. H., Wang Z. Y., Waxman S., Zelent A. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993; 12: 1161–1167
  • Chen Z., Guidez F., Rousselot P., Agadir A., Chen S. J., Wang Z. Y., Degos L., Zelent A., Waxman S., Chomienne C. PLZF-RARα fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc. Natl. Acad. Sci. USA 1993; 91: 1178–1182
  • Gillard E. F., Solomon E. Acute promyelocytic leukaemia and the t(15:17) translocation. Semin. Cancer Biol. 1993; 4: 359–367
  • Prasad R., Leshkovitz D., Gu Y., Alder H., Nakamura T., Saito H., Huebner K., Berger R., Croce C. M., Canaani E. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc. Natl. Acad. Sci. USA 1994; 91: 8107–8111
  • Tkachuk D. C., Kohler S., Cleary M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700
  • Thirman M. J., Levitan D. A., Kobayashi H., Simon M. C., Rowley J. D. Cloning of a novel gene, ELL, that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Blood 1994; 84: 230a
  • De Thé H., Chomienne C., Lanotte M., Degos L., Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 1990; 347: 558–561
  • De Thé H., Lavau C., Marchio A., Chomienne C., Degos L., Dejean A. The PML-RARα fusion mRNA generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684
  • Borrow J., Goddard A. D., Sheer D., Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990; 249: 1577–1580
  • Lemons R. S., Eilender D., Waldmann R. A., Robentisch M., Frej A. K., Ledbetter D. M., Willmann C., McConnel P. Cloning and characterization of the t(15;17) translocation breakpoint region in acute promyelocytic leulkemia. Genes Chromosomes Cancer 1990; 2: 79–87
  • Alcalay M., Zangrilli D., Pandolfi P. P., Longo L., Mencarelli A., Giacomucci A., Rocchi M., Biondi A., Rambaldi A., Lo Coco F., Diverio D., Donti E., Grignani F., Pelicci P. G. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proc. Natl. Acad. Sci. USA 1991; 88: 1977–1981
  • Kakizuka A., Miller W. H., Jr, Umesono K., Warrell R. P., Jr, Frankel S. R., Murty V. V. V.S., Dmitrovsky E., Evans R. M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 1991; 66: 663–674
  • Warrell R. P., De Thé H., Wang Z. Y., Degos L. Acute promyelocytic leukemia. N. Engl. J. Med. 1993; 329: 177–189
  • Grignani F., Fagioli M., Alcalay M., Longo L., Pandolfo P. P., Donti E., Biondi A., Lo Coco F., Grignani F., Pelicci P. G. Acute promyelocytic leukemia: From genetics to treatment. Blood 1994; 83: 10–25
  • Lavau C., Dejean A. The t(15; 17) translocation in acute promyelocytic leukemia. Leukemia 1994; 8: 1615–1621
  • Liu P., Turlé S. A., Hajra A., Claxton D. F., Marlton P., Freedman M., Sicilianso M. J., Collins F. S. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044
  • Liu P., Claxton D. F., Marlton P., Hajra A., Siciliano J., Freedman M., Chandrasekharappa S. C., Yanagisawa K., Stallings R. L., Collins F. S., Siciliano M. J. Identification of yeast artificial chromosomes containing the inversion 16 p-arm breakpoint associated with acute myelomono-cytic leukemia. Blood 1993; 82: 716–721
  • Dauwerse J. G., Wessels J. W., Giles R. H., Wiegant J., van der Reijden B. A., Fugazza C., Jumelet E. A., Smit E., Baas F., Raap A. K., Hagemeijer A., Beverstock G. C., Vari Ommen G. J. B., Breuning M. H. Cloning the breakpoint cluster region of the inv(16) in acute myelomonocytic leukemia M4 Eo. Hum. Mol. Genet. 1993; 2: 1527–1534
  • Rabbits T. H., Forster A., Larson R., Nathan P. Fusion of the dominant negative trnnscription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nature Genet. 1993; 4: 175–180
  • Ichikawa H., Shimizu K., Hayashi Y., Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 1994; 54: 2865–2868
  • Hunger S. P., Ohyashiki K., Toyama K., Cleary M. L. HLF, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev. 1992; 6: 1608–1620
  • Inaba T., Roberts W. M., Shapiro L. H., Jolly K. W., Raimondi S. C., Smith S. D., Look T. A. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 1992; 257: 531–534
  • Corral J., Forster A., Thompson S., Lampert F., Kaneko Y., Slater R., Kroes W. G., van der Schoot C. E., Ludwig W. D., Karpas A., Pocock C., Cotter F., Rabbitts T. H. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc. Natl. Acad. Sci. USA 1993; 90: 8538–8542
  • Parry P., Wei Y., Evans G. Cloning and characterization of the t(X; 11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Gene Chromosomes Cancer 1994; 11: 79–84
  • Latchman D. S. Eukaryotic transcription factors. Biochem. J. 1990; 270: 281–285
  • Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989; 245: 371–373
  • Nichols J., Nimer S. D. Transcription factors, translocations, and leukemia. Blood 1992; 80: 2953–2963
  • Van Dongen J. J. M., Breit T. M., Adriaansen H. J., Beishuizen A., Hooijkaas H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 1992; 6(Suppl. 1)47–59
  • Campana D. Monitoring minimal residual disease in acute leukemia: Expectations, possibilities and initial clinical results. Int. J. Clin. Lab. Res. 1994; 24: 132–138
  • Bentz M., Döhner H., Cabot G., Lichter P. Fluorescence in situ hybridization in leukemias: “The FISH are spawning”. Leukemia 1994; 8: 1447–1452
  • Hughes T. P., Ambrosetti A., Barbu V., et al. Clinical value of PCR in diagnosis and follow-up of leukaemia and lymphoma: Report of the Third Workshop of the Molecular Biology/BMT Study Group. Leukemia 1991; 5: 448–451
  • Negrin R. S., Blume K. G. The use of the polymerase chain reaction for the detection of minimal residual malignant disease. Blood 1991; 78: 255–258
  • Potter M. N., Cross N. C. P., Van Dongen J. J. M., Saglio G., Oakhill A., Bartram C. R., Goldman J. M. Molecular evidence of minimal residual disease after treatment for leukaemia and lymphoma: An updated meeting report and review. Leukemia 1993; 7: 1302–1314
  • Bartram C. R. Detection of minimal residual leukemia by the polymerase chain reaction: Potential implications for therapy. Clin. Chim. Acta 1993; 217: 75–83
  • Biondi A., Rambaldi A. Polymerase chain reaction (PCR) approach for the evaluation of minimal residual disease in acute leukemia. Stem Cells 1994; 12: 394–401
  • Jonsson O. G., Kitchens R. L., Baer R. J., Buchanan G. R., Smith R. G. Rearrangements of the tal-l locus as clonal markers for T-cell acute lymphoblastic leukemia. J. Clin. Invest. 1991; 87: 2029–2035
  • Macintyre E., Smit L., Ritz J., Kirsch I. R., Strominger J. L. Disruption of the SCL locus in T-lymphoid malignancies correlates with commitment to the T-cell receptor αβ lineage. Blood 1992; 80: 1511–1520
  • Borkhardt A., Repp R., Harbott J., Keller C., Berner F., Ritterbach J., Lampert F. Frequency and DNA sequence of tal-I rearrangement in children with T-cell acute lymphoblastic leukemia. Ann. Hematol. 1992; 64: 305–308
  • Breit T. M., Beishuizen A., Ludwig W. D., Mol E. J., Adriaansen H. J., Van Wering E. R., Van Dongen J. J. M. tal-I deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual desease. Leukemia 1993; 7: 2004–2011
  • Janssen J. W. G., Ludwig W. D., Sterry W., Bartram C. R. SIL-TAL-I deletion in T-cell acute lymphoblastic leukemia. Leukemia 1993; 7: 1204–1210
  • Kagan J., Finger L. R., Besa E., Croce C. M. Detection of minimal residual disease in leukemic patients with the t(10;14)(q24;q11) chromosomal translocation. Cancer Res. 1990; 50: 5240–5244
  • Rimokh R., Berger F., Delsol G., Digonnet I., Rouault J. P., Tigaud J. D., Gadoux M., Coiffier B., Bryon P. A., Magaud J. P. Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphomas. Blood 1994; 83: 1871–1875
  • Molot R. J., Meeker T. C., Wittwer C. T., Perkins S. L., Segal G. H., Masih A. S., Braylan R. C., Kjeldsberg C. R. Antigen expression and polymerase chain reaction amplification of mantle cell lymphomas. Blood 1994; 83: 1626–1631
  • Komatsu H., Iida S., Yamamoto K., Mikuni C., Nitta M., Takahashi T., Ueda R., Seto M. A variant chromosome translocation at 11q13 identifying PRAD1/cyclin D1 as the BCL-I gene. Blood 1994; 84: 1226–1231
  • Lee M. S., Chang K. S., Cabanillas F., Freireich E. J., Trujillo J. M., Stass S. A. Detection of minimal residual cells canying the t(14;18) by DNA sequence amplification. Science 1987; 237: 175–178
  • Creszenzi M., Seto M., Herzig G. P., Weiss P. D., Griffith R. C., Korsmeyer S. I. Thermostable DNA polymerase chain amplification of t(14;18) chromosome breakpoints and detection of minimal residual disease. Proc. Natl. Acad. Sci. USA 1988; 85: 4869–4873
  • Stetler-Stevenson M., Raffeld M., Cohen P., Cossman J. Detection of occult follicular lymphoma by specific DNA amplification. Blood 1988; 72: 1822–1825
  • Ngan B. Y., Nourse J., Cleary M. L. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 1989; 73: 1759–1762
  • Pezzella F., Gatter K. C., Mason D. Y. Detection of 14; 18 chromosomal translocation in paraffin-embedded lymphoma tissue. Lancet 1989; i: 779–780
  • Price C. G. A., Meerabux J., Murtagh S., Cotter F. E., Rohatiner A. Z. S., Young B. D., Lister T. A. The significance of circulating cells carrying t(14;18) in long remission from follicular lymphoma. J. Clin. Oncol. 1991; 9: 1527–1532
  • Gribben I. G., Freedman A. S., Woo S. D., Blake K., Shu R. S., Freeman G., Longtine J. A., Pinkus G. S., Nadler L. M. All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood 1991; 78: 3275–3280
  • Gribben J. G., Freedman A. S., Neuberg D., Roy D. C., Blake K. W., Woo S. D., Grossbard M. L., Rabinowe S. N., Coral F., Freeman G. J., Ritz J., Nadler L. M. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N. Engl. J. Med. 1991; 325: 1525–1533
  • Lambrechts A. C., De Ruiter P. E., Dorssers L. C. J., van't Veer M. B. Detection of residual disease in translocation (14;18) positive non-Hodgkin's lymphoma, using the polymerase chain reaction: A comparison with conventional staging methods. Leukemia 1992; 6: 29–34
  • Gribben J. G., Neuberg D., Freedman A. S., Gimmi C. D., Pesek K. W., Barber M., Saporito L., Woo S. D., Coral F., Spector N., Rabinowe S. N., Grossbard M. L., Ritz J., Nadler L. M. Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 1993; 81: 3449–3457
  • Berinstein N. L., Jamal H. H., Kuzniar B., Klock R. J., Reis M. D. Sensitive and reproducible detection of occult disease in patients with follicular lymphoma by PCR amplification of t(14;18) both pre- and post-treatment. Leukemia 1993; 7: 113–119
  • Finke J., Slanina J., Lange W., Dölken G. Persistence of circulating t(14; 18)-positive cells in long-term remission after radiation therapy for localized-stage follicular lymphoma. J. Clin. Oncol. 1993; 11: 1668–1673
  • Lambrechts A. C., Hupkes P. E., Dorssers L. C. J., Van't Veer M. B. Translocation (14;18)-positive cells are present in the circulation of the majority of patients with localized (stage I and II) follicular Non-Hodgkin's lymphoma. Blood. 1993; 82: 2510–2516
  • Soubeyran P., Cabanillas F., Lee M. S. Analysis of the expression of the hybrid gene bcl-2/IgH in follicular lymphoma. Blood 1993; 81: 122–127
  • Lambrechts A. C., Hupkes P. E., Dorssers L. C. J., Van't Veer M. B. Clinical significance of 1.(14;18)-positive cells in the circulation of patients with stage III or IV follicular Non-Hodgkin's lymphoma during first remission. J. Clin. Oncol. 1994; 12: 1541–1546
  • Hunger S. P., Galili N., Carroll A. J., Crist W. M., Link M. P., Cleary M. L. The t(1;19)(q23;p13) results in consistent fusion of E2A, PEXI coding sequences in acute lymphoblastic leukemias. Blood 1991; 77: 687–693
  • Izraeli S., Lion T. Multiprimer-PCR for screening of genetic abnormalities in acute lymphoblastic leukaemia. Brit. J. Haematol. 1991; 79: 645–647
  • Izraeli S., Janssen J. W.G., Haas O. A., Harbott J., Brok-Simoni F., Walther J. U., Kovar H., Henn T., Ludwig W. D., Reiter A., Rechavi G, Bartram C. R., Gadner H., Lion T. Detection and clinical relevance of genetic abnormalities in pediatric acute lymphoblastic leukemia: A comparison between cyto-genetic and polymerase chain reaction analyses. Leukemia 1993; 7: 671–678
  • Privitera E., Kamps M. P., Hayashi Y., Inaba T., Shapiro L. H., Raimondi S. C., Behm F., Hendershot L., Carroll A. J., Baltimore D., Look A. T. Different molecular consequences of the 1; 19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 1992; 79: 1781–1788
  • Biondi A., Rambaldi A., Rossi V., Elia L., Caslini C., Basso G., Battista R., Barbui T., Mandelli F., Masera G., Croce C., Canaani E., Cimino G. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood 1993; 82: 2943–2947
  • Hilden J. M., Chen C. S., Moore R., Frestedt J., Kersey J. H. Heterogeneity in MLL/AF-4 fusion messenger RNA detected by the polymerase chain reaction in t(4;11) acute leukemia. Cancer Res. 1993; 53: 3853–3856
  • Downing J. R., Head D. R., Raimondi S. C., Carroll A. J., Curcio-Brint A. M., Motroni T. A., Hulshof M. G., Pullen D. J., Domer P. H. The der(II)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21, q23)-containing acute lymphoblastic leukemia. Blood 1994; 83: 330–335
  • Yamamoto K., Seto M., Iida S., Komatsu H., Kamada N., Kojima S., Kodera Y., Nakazawa S., Saito H., Takahashi T., Ueda R. A reverse transcriptase-polymerase chain reaction detects heterogeneous chimeric mRNAs in leukemias with 11q23 abnormalities. Blood 1994; 83: 2912–2921
  • Griesinger F., Elfers H., Ludwig W. D., Falk M., Rieder H., Harbott J., Lampert F., Heinze B., Hoelzer D., Thiel E., Riehm H., Wörmann B., Fonatsch C., Hiddemann W. Detection of HRX-FEL fusion transcripts in pre-pre-B-ALL with and without cytogenetic demonstration of t(4;11). Leukemia 1994; 8: 542–548
  • Borkhardt A., Repp R., Haupt E., Brettreich S., Buchen U., Gossen R., Lampert F. Molecular analysis of MLL-1/AF4 recombination in infant acute lymphoblastic leukemia. Leukemia 1994; 8: 549–553
  • Repp R., Borkhardt A, Haupt E., Kreuder J., Brettreich S., Hammermann J., Nishida K., Lampert F. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 1994, in press
  • Janssen J. W. G., Ludwig W. D., Borkhardt A., Spaldinger U., Fonatsch C., Hossfeld D. K., Harbot J., Schulz A. S., Reiter A., Hoelzer D., Bartram C. R. Pre-pre-B acute lymphoblastic leukemia: High frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood 1994, in press
  • Downing J. R., Head D R., Curcio-Brint A. M., Hulshof M. G., Motroni T. A., Raimondi S. C., Carroll A. J., Drabkin H. A., Willman C., Theil K. S., Civin C. I., Erickson F. An AMLI/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood 1993; 81: 2860–2865
  • Kozu T., Miyoshi H., Shimizu K., Maseki N., Kaneko Y., Asou H., Kamada N., Ohki M. Junctions of the AMLI/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase: chain reaction. Blood 1993; 82: 1270–1276
  • Nucifora G., Birn D. I., Erickson P., Gao J., Le Beau M. M., Drabkin H., Rowley J. D. Detection of DNA rearrangements in the AML1, ETO loci and of, an AML1/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood 1993; 81: 883–888
  • Nucifora G., Larson R. A., Rowley J. D. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1991; 82: 712–715
  • Chang K. S., Fan Y. H., Stass S. A., Estey E. H., Wang G., Trujillo J. M., Erickson P., Drabkin H. Expression of AML1-ETO fusion transcripts and detection of minimal residual disease in t(8;21)-positive acute myeloid leukemia. Oncogene 1919b; 8: 983–988
  • Maruyama F., Yang P., Stass S. A., Cork A., Freireich E. J., Lee M. S., Chang K. S. Detection of the AML1/ETO fusion transcript in the t(8;21) masked translocation in acute myelogenous leukemia. Cancer Res. 1993; 53: 4449–4451
  • Maruyama F., Stass S. A., Estey E. H., Cork A., Hirano M., Ino T., Freichreich E. J., Yang P., Chang K. S. Detection of AMLI/ETO fusion transcript as a tool for diagnosing t(8;21) positive acute myelogenous leukemia. Leukemia 1994; 8: 40–45
  • Kusec R., Laczika K., Knöbl P., Friedl J., Greinix H., Kahls P., Linkesch W., Schwarzinger I., Mitterbauer G., Purtscher B., Lechner O. A., Haas K., Jaeger U. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia 1994; 8: 735–739
  • Zhang T., Hillion J., Tong J. H., Cao Q., Chen S. J., Berger R., Chen Z. AML-1 gene rearrangement and AML-1-ETO gene expression as molecular markers of acute myeloblastic leukemia with t(8;21). Leukemia 1994; 8: 729–734
  • Saunders M. J., Tobal K., Yin J. A. L. Detection of t(8;21) by reverse transcriptase polymerase chain reaction in patients in remission of acute myeloid leukaemia type M2 after chemotherapy or bone marrow transplantation. Leukemia Res. 1994; 18: 891–895
  • Lee M. S., Le Maistre A., Kantarjian H. M., Talpaz M., Freireich E. J., Trujillo J. M., Stass S. A. Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 1989; 73: 2165–2170
  • Kawasaki E. S., Clark S. S., Coyne M. Y., Smith S. D., Champlin R., Witte O. N., McCormick F. P. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified. in vitro. Proc. Natl. Acad. Sci. USA 1988; 85: 5698–5702
  • Dobrovic A., Trainor K. J., Morley A. A. Detection of the molecular abnormality in chronic myeloid leukemia by use of the polymerase chain reaction. Blood 1988; 72: 2063–2065
  • Hermans A., Gow J., Selleri L., von Lindern M., Hagemeijer A., Wiedemann L. M., Grosveld G. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 1988; 2: 628–633
  • Roth M. S., Antin J. H., Bingham E. L., Ginsburg D. Detection of Philadelphia chromosome-positive cells by the polymerase chain reaction following bone marrow transplant for chronic myelogenous leukemia. Blood 1989; 74: 882–885
  • Hooberman A. L., Carrino J. J., Leibowitz D., Rowley J. D., Le Beau M. M., Arlin Z. A., Westbrook C. A. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 1989; 86: 4259–4263
  • Morgan G. J., Hughes T., Janssen J. W. G., Gow J., Guo A. P., Goldman J. M., Wiedemann L. M., Bartram C. R. Polymerase chain reaction for detection of residual leukaemia. Lancet 1989; i: 928–929
  • Gabert I., Thuret I., Lafage M., Carcassone Y., Maranchini D., Mannoni P. Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukaemia patients after bone-marrow transplantation. Lancet 1989; ii: 1125–1127
  • Lange W., Snyder D. S., Castro R., Rossi J. J., Blume K. G. Detection by enzymatic amplification of bcr-abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood 1989; 73: 1735–1741
  • Bartram C. R., Janssen J. W. G., Schmidberger M., Lyons J., Arnold R. Minimal residual leukaemia in chronic myeloid leukaemia patients after T-cell depleted bone-marrow transplantation. Lancet 1989; i: 1260
  • Delfau M. H., Kerckaert J. P., Collyn d'Hooghe M., Fenaux P., Lai J. L., Jouet J. P., Grandchamp B. Detection of minimal residual disease in chronic myeloid leukemia patients after bone marrow transplantation by polymerase chain reaction. Leukemia 1990; 4: 1–5
  • Martiat P., Maisin D., Philippe M., Ferrant A., Michaux J. L., Cassiman J. J., Van Den Berghe H., Sokal G. Detection of residual BCR/ABL transcripts in chronic myeloid leukaemia patients in complete remission using the polymerase chain reaction and nested primers. Brit. J. Haematol. 1990; 75: 355–358
  • Sawyers C. L., Timson L., Kawasaki E. S., Clark S. S., Witte O. N., Champlin R. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 1990; 87: 563–567
  • Kohler S., Galili N., Sklar J. L., Donlon T. A., Blume K. G., Cleary M. L. Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia 1990; 4: 541–547
  • Suryanarayan K., Hunger S. P., Kohler S., Carroll A. J., Crist W., Link M. P., Cleary M. L. Consistent involvement of the BCR gene by 9;22 breakpoints in pediatric acute leukemias. Blood 1991; 77: 324–330
  • Delage R., Soiffer R. J., Dear K., Ritz J. Clinical significance of bcr-abl gene rearrangement detected by polymerase chain reaction after allogeneic bone marrow transplantation in chronic myelogenous leukemia. Blood 1991; 78: 2759–2767
  • Hughes T. P., Morgan G. J., Martiat P., Goldman J. M. Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: Role of polymerase chain reaction in predicting relapse. Blood 1991; 77: 874–878
  • Opalka B., Wandl U. B., Becher R., Kloke O., Nagel-Hiemke M., Moritz T., Beer U., Seeber S., Niederle N. Minimal residual disease in patients with chronic myelogenous leukemia undergoing long-term treatment with recombinant inter-feron α-2b alone or in combination with interferon γ. Blood 1991; 78: 2188–2193
  • Gehly G. B., Bryant E. M., Lee A. M., Kidd P. G., Thomas E. D. Chimeric BCR-abl messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 1991; 78: 458–465
  • Maurer J., Janssen J. W. G., Thiel E., Van Denderen J., Ludwig W. D., Aydemir Ü., Heinze B., Fonatsch C., Harbott J., Reiter A., Riehm H., Hoelzer D., Bartram C. R. Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancer 1991; 337: 1055–1058
  • Roth M. S., Antin J. H., Ash R., Terry V. H., Gotlieb M., Silver S. M., Ginsburg D. Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood 1992; 79: 276–282
  • Bilhou-Nabera C., Viard F., Marit G., Gharbi M. J., Salzes S., Reiffers J., Broustet A., Bernard P. Complete cyto-genetic conversion in chronic myelocytic leukemia patients undergoing interferon α therapy: Follow-up with reverse polymerase chain reaction. Leukemia 1992; 6: 595–598
  • Pignon J. M., Henni T., Amselem S., Vidaud M., Duquesnoy P., Vernant J. P., Kuentz M., Cordonnier C., Rochant H., Goossens M. Frequent detection of minimal residual disease by use of the polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 1990; 4: 83–86
  • Snyder D. S., Rossi J. J., Wang J. L., Sniecinski I. J., Slovak M. L., Wallace R. B., Forman S. J. Persistence of bcr-abl gene expression following bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Transplantation 1991; 51: 1033–1040
  • Lee M. S., Kantarjian H., Talpaz M., Freireich E. J., Deisseroth A. B., Trujillo J. M., Stass S. A. Detection of minimal residual disease by polymerase chain reaction in Philadelphia chromosome-positive chronic myelogenous leukemia following interferon therapy. Blood 1992; 79: 1920–1923
  • Lee M., Khouri I., Champlin R., Kantarjian H., Talpaz M., Trujillo J., Freireich E., Deisseroth A., Stass S. Detection of minimal residual disease by polymerase chain reaction of bcr/abl transcripts in chronic myelogenous leukaemia following allogeneic bone marrow transplantation. Brit. J. Haematol. 1992; 82: 708–714
  • Guerrasio A., Martinelli G., Saglio G., Rosso C., Zaccaria A., Rosti G., Testoni N., Ambrosetti A., Izzi T., Sessarego M., Frassoni F., Gasparini P., Chiamenti A., Di Bartolomeo P., Pignatti P. F. Minimal residual disease status in transplanted chronic myelogenous leukemia patients: Low incidence of polymerase chain reaction positive cases among 48 long disease-free subjects who received unmanipulated allogeneic bone marrow transplants. Leukemia 1992; 6: 507–512
  • Lion T., Izraeli S., Henn T., Gaiger A., Mor W., Gadner H. Monitoring of residual disease in chronic myelogenous leukemia by quantitative polymerase chain reaction. Leukemia 1992; 6: 495–499
  • Miyamura K., Tahara T., Tanimoto M., Morishita Y., Kawashima K., Morishima Y., Saito H., Tsuzuki S., Takeyama K., Kodera Y., Matsuyama K., Hirabayashi N., Yamada H., Naito K., Imai K., Sakamaki H., Asai O., Mizutani S. Long persistence bcr-abl positive transcript detected by polymerase chain reaction after marrow transplant for chronic myelogenous leukemia without clinical relapse: A study of 64 patients. Blood 1993; 81: 1089–1093
  • Cross N. C. P., Feng L., Bungey J., Goldman J. M. Minimal residual disease after bone marrow transplant for chronic myeloid leukemia detected by the polymerase chain reaction. Leukemia Lymphoma 1993; 11 Suppl. 1: 39–43
  • Gaiger A., Lion T., Kalhs P., Mitterbauer G., Henn T., Haas O., Födinger M., Kier P., Forstinger C., Quehenberger P., Hinterberger W., Jäger U., Linkesch W., Mannhalter C., Lechner K. Frequent detection of BCR-ABL specific mRNA in patients with chronic myeloid leukemia (CML) following allogeneic and syngeneic bone marrow transplantation (BMT). Leukemia 1993; 7: 1766–1772
  • Cross N. C. P., Melo J. V., Feng L., Goldman J. M. An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 1994; 8: 186–189
  • Talpaz M., Estrov Z., Kantarjian H., Ku S., Foteh A., Kurzrock R. Persistence of dormant leukemic progenitors during interferon-induced remission in (chronic myelogenous leukemia—Analysis by polymerase chain reaction of individual colonies. J. Clin. Invest. 1994; 94: 1383–1389
  • Radich J. P., Kopecky K. J., Boldt D. H., Head D., Slovak M. L., Babu R., Kirk J., Lee A., Kessler P., Appelbaum F., Gehly G. Detection of BCR-ABL fusion genes in adult acute lymphoblastic leukemia by the polymerase chain reaction. Leukemia 1994; 8: 1688–1695
  • Lo Coco F., Avvisati G., Diverio D., Petti M. C., Alcalay M., Pandolfi P. P., Zangrilli D., Biondi A., Rambaldi A., Moleti M. L., Mandelli F., Pelicci P. G. Mlolecular evaluation of response to all-trans-retinoic acid therapy in patients with acute promyelocytic leukemia. Blood 1991; 77: 1657–1659
  • Lo Coco F., Diverio D., Pandolfi P. P., Biondi A., Rossi V., Avvisati G., Rambaldi A., Arcese W., Petti M. C., Meloni G., Mandelli F., Grignani F., Masera G., Barbui T., Pelicci P. G. Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukemia. Lancer 1992; 340: 1437–1438
  • Chang K. S., Lu J., Wang G., Trujillo J. M., Estey E., Cork A., Chu D. T., Freireich E. J., Stass S. A. The t(15;17) breakpoint in acute promyelocytic leukemia cluster within two different sites of the myl gene: Targets for the detection of minimal residual disease by the polymerase chain reaction. Blood 1992; 79: 554–558
  • Biondi A., Rambaldi A., Pandolfi P. P., Rossi V., Giudici G., Alcalay M., Lo Coco F., Diverio D., Pogliani E. M., Lanzi E. M., Mandelli F., Masera G., Barbui T., Pelicci P. G. Molecular monitoring of the myl/retinoic acid receptor-α fusion gene in acute promyelocytic leukemia by polymerase chain reaction. Blood 1992; 80: 492–497
  • Castaigne S., Balitrand N., De Thé H., Dejean A., Degos L., Chomienne C. A PML/retinoic acid receptor α fusion transcript is constantly detected by RNA-based polymerase chain reaction in acute promyelocytic leukemia. Blood 1992; 79: 3110–3115
  • Borrow J., Goddard A. D., Gibbons B., Katz F., Swirsky D., Fioretos T., Dube I., Wintield D. A., Kingston J., Hagemeijer A., Rees J. K. H., Lister T. A., Solomon E. Diagnosis of acute promyelocytic leukaemia by RT-PCR: Detection of PML-RARA, RARA-PML fusion transcripts. Brit. J. Haematol. 1992; 85: 529–540
  • Miller W. H., Jr, Kakizuka A., Frankel S. R., Warrell R. P., Jr, De Blasio A., Levine K., Evans R. M., Dmitrovsky E. Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor a clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA. 1992; 89: 2694–2698
  • Chen S. J., Chen Z., Chen A., Tong J. H., Dong S., Wang Z. Y., Waxman S., Zelent A. Occurrence of distinct PML-RAR-α fusion gene isoforms in patients with acute promyelocytic leukemia detected by reverse transcriptase/polymerase chain reaction. Oncogene 1992; 7: 1223–1232
  • Miller W. H., Jr, Levine K., De Blasio A., Frankel S., Dmitrovsky E., Warrell R. P., Jr. Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR-α fusion mRNA. Blood 1993; 82: 1689–1694
  • Ikeda K., Sasaki K., Tasaka T., Nagai M., Kawanishi K., Takahara J., Irino S. Reverse transcriptase-polymerase chain reaction for PML-RARα fusion transcripts in acute promyelocytic leukemia and its application to minimal residual leukemia detection. Leukemia 1993; 7: 544–548
  • Huang W., Sun G. L., Li X. S., Cao Q., Lu Y., Jang G. S., Zhang F. Q., Chai J. R., Wang Z. Y., Waxman S., Chen Z., Chen S. J. Acute promyelocytic leukemia: Clinical relevance of two major PML-RARα isoforms and deteclion of minimal residual disease by retrotranscriptase/polymerase chain reaction to predict relapse. Blood 1993; 82: 1264–1269
  • Diverio D., Pandolfi P P., Biondi A., Avvisati G., Petti M. C., Mandelli F., Pelicci P. G., Lo Coco F. Absence of reverse transcriptase-polymerase chain reaction detectable residual disease in patients with acute promyelocytic leukemia in long-term remission. Blood 1993; 82: 3556–3559
  • Laczika K., Mitterbauer G., Korninger L., Knöbl P., Schwarzinger I., Kapiotis S., Haas O. A., Kyrle P. A., Pont J., Oehler L., Purtscher B., Thalhammer F., Lechner K., Jaeger U. Rapid achievement of PML-RARα polymerase chain reaction (PCR)-negativity by combined treatment with all-trans-retinoic acid and chemotherapy in acute promyelocylic leukemia: A pilot study. Leukemia 1994; 8: 1–5
  • Kominger L., Knobl P., Laczika K., Mustafa S., Quehenberger P., Schwarzinger I., Lechner K., Jaeger U., Mannhalter C. PML-RAR alpha PCR positivity in the bone marrow of patients with APL precedes haematological relapse by 2–3 months. Brit J. Haematol. 1994; 88: 427–431
  • Claxton D F., Liu P., Hsu H. B., Marlton P., Hester J., Collins F., Deisseroth A. B., Rowley J. D., Siciliano M. J. Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelsogenous leukemia. Blood 1994; 83: 1750–1756
  • Hébert J., Cayuela J. M., Daniel M. T., Berger R., Sigaux F. Detection of minimal residual disease in acute myelomonocytic leukemia with abnormal marrow eosinophils by nested polymerase chain reaction with allele specific amplificiation. Blood 1994; 84: 2291–2296
  • Devaraj P. E., Forono L., Sekhar M., Butler T., Wright F., Mehta A., Samson D., Prentice H. G., Hoffbrand A. V., Secker-Walker L. E2A/HLF fusion cDNAs and the use of RT-PCR for the detection of minimal residual disease in t(17; 19)(q22;p13) acute lymphoblastic leukemia. Leukemia 1994; 8: 1131–1138
  • Hunger S. P., Devaraj P. E., Foroni L., Secker-Walker L. M., Cleary M. L. Two types of genomic rearrangements create alternative E2A-HILF fusion proteins in t(17;19)-ALL. Blood 1994; 83: 2970–2977
  • Drexler H. G., MacLeod R. A. F., Quentmeier H., Steube K. DSM Catalogue of Human and Animal Cell Lines, Fourth Edition. Braunschweig, Germany 1994
  • Drexler H. G. Leukemia cell lines: In vitro models for the study of chronic myeloid leukemia. Leukemia Res. 1994; 18: 919–927
  • Drexler H. G., Gignac S. M., Miriowada J. Hematopoietic cell lines. Atlas of Human Tumor Cell Lines, R. J. Hay, J. G. Park, A. Gazdar. Academic Press, Orlando 1994; 213–250
  • Hu Z. B., Quentmeier H., MacLeod R. A. F., Uphoff C. C., Drexler H. G. Cell lines as in vitro mode15 of acute promyelocytic leukemia. Leukemia Lymphoma 1994, submitted
  • Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230: 1350–1354
  • Lee M. S., Chang K. S., Freireich E. J., Kantarjian H. M., Talpaz M., Trujillo J. M., Stass S. A. Detection of minimal residual bcr/abl transcripts by a modified polymerase chain reaction. Blood 1988; 72: 893–897
  • Limpens J., De Jong D., van Krieken J. H. J.M., Price C. G. A., Young B. D., van Ommen G. J. B., Kluin P. M. Bcl-2/Jh rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991; 6: 2271–2276
  • Aster J. C., Kobayashi Y., Shiota M., Mori S., Sklar J. Detection of the t(14: 18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am. J. Pathol. 1992; 141: 291–299
  • Liu Y., Hernandez A. M., Shibata D., Cortopassi G. A. BCL2 translocation frequency rises with age in humans. Proc. Natl. Acad. Sci. USA 1994; 91: 8910–8914
  • Kluin P. M., Stad R., Vos C., Limpens J., De Vlaam C., De Jong D., van Ommen G. J. B., Schuuring E. Lymphoma associated translocation t(14; 18) in blood B-cells of normal individuals. Blood 1994; 84: 521a
  • Kita K., Shirakawa S., Kamada N., the Japanese Cooperative Group of Leukemia/Lymphoma. Cellular characteristics of acute myeloblastic leukemia associated with t(8;21)(q22;q22). Leukemia Lymphoma. 1994; 13: 229–234
  • Melo J. V., Gordon D. E., Cross N. C. P., Goldman J. M. The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 1993; 81: 158–165
  • Mills K. I., Benn P., Birnie G. D. Does the breakpoint within the major breakpoint cluster region (M-bcr) influence the duration of the chronic phase in chronic myeloid leukemia? An analytical comparison of current literature. Blood 1991; 78: 1155–1161
  • Hughes T., Janssen J. W. G., Morgan G., Martiat P., Saglio G., Pignon J. M., Pignatti F. P., Mills K., Keating A., Gluckman E., Bartram C. R., Goldman J. M. False-positive results with PCR to detect leukaemia-specific transcript. Lancet 1990; i: 1037–1038
  • Pichert G., Ritz J. Clinical significance of bcr-abl gene rearrangement detected by the polymerase chain reaction after al-logeneic bone marrow transplantation in chronic myelogenous leukemia. Leukemia Lymphoma 1993; 10: 1–8
  • Thompson J. D., Brodsky I., Yunis J. J. Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood 1992; 79: 1629–1635
  • Thirman M. J., Gill H. J., Burnett R. C., Mbangkollo D., McCabe N. R., Kobayashi H., Ziemin-van der Poel S., Kaneko Y., Morgan R., Sandberg A. A., Chaganti R. S. K., Larson R. A., Le Beau M. M., Diaz M. O., Rowley J. D. Rearrangemant of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocation?. N. Engl. J. Med. 1993; 329: 909–914
  • Alcalay M., Zangrilli D., Fagioli M., Pandolfi P. P., Mencarelli A., Lo Coco F., Biondi A., Grignani F., Pelicci P. G. Expression pattern of the RARα-PML fusion gene in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1992; 89: 4840–4844
  • Geng J. P., Tong J. H., Dong S., Wang Z. Y., Chen S. J., Chen Z., Zelent A., Berger R., Larsen C. J. Localization of the chromosome 15 breakpoints and expression of multiple PML-RARα transcripts in acute promyelocytic leukemia: A study of 28 Chinese patients. Leukemia 1993; 7: 20–26
  • Claxton D. F., Reading C. L., Nagarajan L., Tsujimoto Y., Andersson B. S., Estey E., Cork A., Huh Y. O., Trujillo J., Deisseroth A. B. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 1992; 80: 582–586
  • Diverio D., Pandolfi P. P., Rossi V., Biondi A., Pelicci P. G., Lo Coco F. Monitoring of treatment outcome in acute promyelocytic leukemia by RT-PCR. Leukemia 1994; 8: 1105–1107
  • Lo Coco F., Pelicci P. G., Biondi A. Clinical relevance of the PML/RAR-α gene rearrangement in acute promyelocytic leukaemia. Leukemia Lymphoma 1994; 12: 327–332
  • Johnson P. W. M., Lister T. A. Can the polymerase chain reaction be used to direct therapy?. Leukemia Lymphoma 1993; 10 Suppl: 151–152
  • Lion T. Clinical implications of qualitative and quantitative polymerase chain reaction analysis in the monitoring of patients with chronic myelogenous leukemia. Bone Marrow Transplant. 1994; 14: 505–509
  • Cross N. C. P., Feng L., Chase A., Bungey J., Hughes T. P., Goldman J. M. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936
  • Vanrhee F., Lin F., Cross N. C. P., Reid C. D. L., Lakhani A. K. V., Szydlo R. M., Goldman J. M. Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Bone Marrow Transplant. 1994; 14: 609–612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.