120
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Performance of CD3xCD19 Bispecific Monoclonal Antibodies in B Cell Malignancy

Pages 381-393 | Received 12 Jan 1995, Published online: 01 Jul 2009

References

  • Veerman A. J. P., Pieters R. Annotation: Drug sensitivity assays in leukaemia and lymphoma. Br. J. Haemat. 1990; 74: 381–384
  • Foon K. A. Biological Response Modifiers: The New Immunotherapy. Cancer Res. 1989; 49: 1621–1639
  • Lotze M. T., Finn O. J. Recent advances in cellular immunology: implications for immunity to cancer. Immunol. Today 1990; 11: 190–193
  • Heaton K. M., Grimm E. A. Cytokine combinations in immunotherapy for solid tumors: a review. Cancer Immunol. Immunother. 1993; 37: 213–219
  • Maas R. A., Dullens H. F. J., den Otter W. Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. Cancer Immunol. Immunother. 1993; 36: 141–148
  • Smith K. A. Lowest dose Interleukin-2 immunotherapy. Blood 1993; 81: 1414–1423
  • Old L. J. Tumor Necrosis Factor (TNF). Science 1985; 230: 630–632
  • Lotze M. T., Line B. R., Mathisen D. J., Rosenberg S. A. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J. Immunol. 1980; 125: 1487–1493
  • Takai N., Tanaka R., Yoshida S., Hara N., Saito T. In vivo and in vitro effect of adoptive immunotherapy of experimental murine brain tumors using lymphokine-activated killer cells. Cancer Res. 1988; 48: 2047–2052
  • Hamann A. Mechanisms of lymphocyte traffic and cell targeting. Int. J. Cancer 1992; 7: 19–23
  • Rosenberg S. A. Immunotherapy of cancer using interleukin-2: current status and future prospects. Immunol. Today 1988; 9: 58–62
  • Whiteside T. L., Miescher S., Hurlimann J., Moretta L., von Fliedner V. Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int. J. Cancer 1986; 37: 803–811
  • Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. G., Seipp C. A., Simpson C., Carter C., Bock S., Schwartzentruber D., Wei J. P., White D. E. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Engl. J. Med. 1988; 319: 1676–1680
  • Grossbard M. L., Press O. W., Appelbaum F. R., Bernstein I. D., Nadler L. M. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 1992; 80: 863–878
  • Mellstedt H. Monoclonal antibodies in cancer therapy. Curr. Opin. Immunol. 1990; 2: 708–713
  • Uckun F. M., Chelstrom L. M., Finnegan D., Tuel-Ahlgren L., Manivel C., Irvin J. D., Myers D. E., Gunther R. Effective immunochemotherapy of Calla+Cμ+ human pre-B acute lympfoblastic leukemia in mice with severe combined immunodeficiency using B43 (anti-CD19) pokeweedl antiviral protien im-munotoxin plus cyclophosphamide. Blood. 1992; 79: 3116–3129
  • Ghetie M. A., Tucker K., Richardson J., Uhr J. W., Vitetta E. S. The antitumor activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi lymphoma is enhanced by either an antiLCD 19 antibody or an anti-CD 19 immunotoxin. Blood 1992; 80: 2315–2320
  • Rosen S. T., Zimmer A. M., Goldman-Leikin R., Gordon L. I., Kazikiewicz J. M., Kaplan E. H., Variakoijs D., Marder R. J., Dykewicz M. S., Piergies A., Silverstein E. A., Roenigk H. H., Spies S. M. Radioimmunodetection and radioimmunotherapy of cutaneous T cell lymphomas using an 131 I-labeled monoclonal antibody; an Illinois Cancer Council study. J. Clin. Oncol. 1987; 5: 562–573
  • Vriesendorp H. M., Herpst J. M., Germack M. A., Klein J. L., Leichner P. K., Loudenslager D. M., Order S. E. Phase I—II studies of Yttrium-labeled antiferritin treatment for end-stage Hodgkin's disease, including radiation therapy oncology group 87–01. J. Clin. Oncol. 1991; 9: 918–928
  • Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497
  • Goding J. W. Antibody production by hybridomas. J. Immunol. Methods 1980; 39: 285–308
  • Köhler G. Derivation and divenification of monoclonal antibodies. EMBO J. 1985; 4: 1359–1365
  • Bispecific antibodies and targeted cellular, cytotoxicity. Lienhart, Les UlisFrance 1991; VII
  • Staerz U. D., Bevan M. J. Use of anti-receptor antibodies to focus T-cell activity. Immunol. Today 1986; 7 & 8: 241–254
  • Perez P., Hoffman R. W., Shaw S., Bluestone J. A., Segal D. M. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 1985; 316: 354–356
  • Tutt A., Greenman J., Stevenson G. T., Glennie M. J. Bispecific F(ab'y)3 antibody derivatives for redirecting unprimed cytotoxic Tcells. Eur. J. Immunol. 1991; 21: 1351–1358
  • Karpovsky B., Titus J. A., Stephany D. A., Segal D. M. Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fcγ receptor antibodies. J. Exp. Med. 1984; 160: 1686–1701
  • Milstein C., Cuello A. C. Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunol. Today 1984; 5: 299–304
  • De Lau W. B. M., van Loon A. E., Heije K., Valerio D., Bast B. J. E.G. Production of hybrid hybridomas based on HAT(s)-neomycin(r) double mutants. J. Immunol. Methods 1989; 117: 1–8
  • Lanzavecchia A., Scheidegger D. The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur. J. Immunol. 1987; 17: 105–111
  • De Lau W. B. M., Heije K., Neefjes J. J., Oosterwegel M., Rozemuller E., Bast B. J. E.G. Absence of preferential homologous H/L chain association in hybrid hybridomas. J. Int. Immunol. 1991; 146: 906–914
  • Chatenoud L., Bach J. F. Antigenic modulation—a major mechanism of antibody action. Immunol. Today 1984; 5: 20–25
  • Kostelney S. A., Cole M. S., Tso J. Y. Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. 1992; 148: 1547–1553
  • Weiner G. J., Kostelny S. A., Hillstrom J. R., Cole M. S., Link B. K., Wang S. L., Tso J. Y. The role of T cell activation in anti-CD3 × antitumor bispecific antibody therapy. J. Immunol. 1994; 152: 2385–2392
  • Hayden M. S., Linsley P. S., Gayle M. A., Bajorath J., Brady W. A., Norris N. A., Fell H. P., Ledbetter J. A., Gilliland L. K. Single-chain mono- and bispecific antibody derivatives with novel biological properties and antitumor activity from a COS cell transient expression system. Therapeutic Immunology 1994; 1: 3–15
  • Traunecker A., Lanravecchia A., Karjalainen K. Janusin: new molecular design for bispecific reagents. Int. J. Cancer 1992; 7: 51–52
  • Staerz U. D., Kanagawa O., Bevan M. J. Hybrid antibodies can target sites for attack by T cells. Nature 1985; 314: 628–630
  • Fanger M. W., Segal D. M., Romet-Lemonne J. L. Bispecific antibodies arid targeted cellular cytotoxicity. Immunol. Today 1991; 12: 51–54
  • Fanger M. W., Guyre P. M. Bispecific antibodies for targeted cellular cytotoxicity. Tib Tech 1991; 9: 375–380
  • Fanger M. W., Morganelli P. M., Guyre P. M. Bispecific antibodies. Crit. Rev, Immunol. 1992; 12: 101–124
  • Beun G. D. M., van de Velde C. J. H., Fleuren G. J. T-cell based cancer immunotherapy: direct or redirect tumor-cell recognition?. Immunol Today 1994; 15: 11–15
  • Segal D. M., Qian J. H, Mezzanzanica D., Garrido M. A., Titus J. A., George A. J. T., Jost C. R., Perez P., Wunderlich J. R. Targeting of anti-tumor responses with Bispecitic antibodies. Immunobiol. 1992; 185: 390–402
  • Glennie M. J., Stevenson G. T. Univalent antibodies kill tumour cells in vitro and in vivo. Nature 1982; 295: 712–713
  • Roosnek E., Lanzavecchia A. Triggering T cells by otherwise inert hybrid anti-CD3/antitumor antibodies requires encouter with the specific target cell. J. Exp. Med. 1989; 170: 297–302
  • Canevari S., Mezzanzanica D., Menard S., Ferrini S., Moretta L., Colnaghi M. I. Possible targets on carcinoma for BmAb retargeting of lymphocyte or drug cytotoxicity. Int. J. Cancer 1992; 7: 42–44
  • Nitta T., Sato K., Okumura K., Ishii S. Induction of cytotoxicity in human T cells coated with anti-glioma × anti-CD3 bispecific antibody against human glioma cells. J. Neurosurg. 1990; 72: 476–481
  • Haagen J. A., van de Griend R., Clark M., Geerars A., Bast B., De Gast B. Killing of human leukaemia/lymphoma B cells by activated cytotoxic T lymphocytes in the presence of a Bispecific monoclonal antibody (αCD3/αCD19). Clin. Exp. Immunol. 1992; 90: 368–375
  • Anderson P. M., Crist W., Hasz D., Caroll A. J., Myers D. E., Uckun F. M. G19.4(αCD3) × B43(αCD19) monoclonal antibody heterconjugate triggers CD19 antigen-specific lysis of t(4;11) acute lymphoblastic CD3 antigen-positive cytotoxic T cells. Blood 1992; 80: 2826–2834
  • Malygin A. M., Somersalo K., Timonen T. Promotion of natural killer cell growth in vitro by bispecific (anti-CD3 × anti-CD16) antibodies. Immunology 1994; 81: 92–95
  • Ball E. D., Guyre P. M., Mills L., Fisher J., Dinces N. B., Fanger M. W. Initial trial of bispecific antibody-mediated immunotherapy of CD15-bearing tumors: cytotoxicity of human tumor cells using a bispecific antibody comprised of anti-CD15 (MoAb PM81) and anti-CD64/FcγRI (MoAb 32). J. Hematotherapy 1992; 1: 85–94
  • Brissinck J., Demanet C., Moser M., Leo O., Thielemans K. Treatment of mice bearing BCL1 lymphoma with bispecific antibodies. J Immunol. 1991; 147: 4019–4026
  • Demanet C., Brissinck J., Mechelen M. V., Loe O., Thielemans K. Treatment of murine B cell lymphoma with bispecific monoclonal antibodies (anti-idiotype × anti-CD3). J. Immunol. 1991; 147: 1091–1097
  • Weiner G. J., Hillstrom J. R. Bispecific anti-idio-type/anti-CD3 antibody therapy of murine B cell lymphoma. J. Immunol. 1991; 147: 4035–4044
  • Bolhuis R. L. H., Lamers C. H. J., Gocy S. H., Eggermont A. M. M., Trimbos J. B. M.Z., Stoter G, Lanzavecchia A., De Re E., Miotti S., Raspagliesi F., Rivoltini L., Colnaghi M. I. Adoptive immunotherapy of ovarian carcinoma with Bs-Mab-targeted lymphocytes: a multicenter study. Int. J. Cancer 1992; supl. 7: 78–81
  • Nitta T., Sato K., Yagita H., Okumura K., Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancer 1990; 335: 368–371
  • De Leij L., De Jonge M., ter Haar A., . Intrapleural and intraperitoneal application of bispecific antibody retargeted lymphocytes to cancer patients. Bispecific antibodies and targeted cellular cytotoxicity, J. L. Romet-Lemonne, M. W. Fanger Segal, et al. Les D. M. Ulis, LienhartFrance 1991; 249–253
  • Kroesen B. J., Buter J., Sleijfer D., Th, Janssen R. A. J., van der Graaf W. T. A., The T. H., De Leij L., Mulder N. H. Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br. J. Cancer 1994; 70: 652–661
  • Clark M., Bolt S., Tunnacliffe A., Waldmann H. Use of bispecific monoclonal antibodies to treat hematological malignancies: a model system using CD3 transgenic mice. Bispecific antibodies and targeted cellular cytotoxicity, J. L. Romet-Lemonne, M. W. Fanger, D. M. Segal Les Ulis. Liehnart, France 1991; 243–247
  • Friend P. J. Immunosuppression with monoclonal antibodies. Curr. Opin. Immunol. 1990; 2: 859–863
  • Stamenkovic I., Seed B. CD 19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J. Exp. Med. 1988; 168: 1205–1210
  • Zhou L. J., Ord D. C., Hughes A. L., Tedder T. F. Structure and domain organization of the CD 19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J. Immunol. 1991; 147: 1424–1432
  • Bradbury L. E., Kansas G. S., Levy S., Evans R. L., Tedder T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-I and Leu-13 molecules. J. Immunol. 1992; 149: 2841–2850
  • De Rie M. A., Schumacher T. N. M., van Schijndel G. M. W., van Lier R. A. W., Miedema F. Regulatory role of CD19 molecules in B-cell activation and differentiation. Cell. Immunol. 1989; 118: 368–381
  • Rigley K. P., Callard R. E. Inhibition of B cell proliferation with anti-CD19 monoclonal antibodies: anti-CD19 antibodies do not interfere with early signaling events triggered by anti-IgM or interleukin. Eur. J. Immunol. 1991; 21: 535–540
  • Carter R. H., Fearon D. T. CD19: lowering the tresh-old for antigen receptor stimulation of B lymphocytes. Science 1992; 256: 105–107
  • Ghetie M. A., Picker L. J., Richardson J. A., Tucker K., Uhr J. W., Vitetta E. S. Anti-CD19 inhibits the growth of human B-cell tumor lines in vitro and of Daudi cells in SCID mice by inducing cell cycle arrest. Blood 1994; 83: 1329–1336
  • Uckun F. M., Ledbetter J. A. Immunobiologic differences between normal and leukemic human B-cell precursors. Proc. Natl. Acad. Sci. USA 1988; 85: 8603–8607
  • Uckun F. M. Regulation of human B-cell ontogeny. Blood 1990; 76: 1908–1923
  • Hekman A., Honselaar A., Sein J. J., Rodenhuis S., De Rie M., Vuist W., Melief C. J. M., Rumke Ph. Treatment of human B-cell lymphoma with anti-CD19 monoclonal antibody and with a combination of anti-CD 19 and IL-2. Mechanisms of Action rind Therapeutic Applications of Biologicals in Cancer 1989; 293–303
  • Hekman A., Honselaar A., Vuist W. M. J., Sein J. J., Rodenhuis S., ten Bokkel Huinink W. W., Somers R., Rumke Ph., Melief C. J. M. Initial experience with treatment of human B cell lymphoma with anti-CD 19 monoclonal antibody. Cancer Immunol. Immunother. 1991; 32: 364–372
  • Uckun F. M., Manivel C., Arthur D., Chelstrom L. M., Finnegan D., Tuel-Ahlgren L., Irvin J. D., Myers D. E., Gunther R. In vivo efficacy of B43(anti-CD19)-pokeweedantiviral protien immunotoxin against human pre-B cell acute lymphoblastic leukemia in mice with severe combined immunodeficiency. Blood 1992; 79: 2201–2214
  • Pulczynski S., Boesen A. M., Jensen O. M. Antibody-induced modulation and intracellular transport of CD10 and CD19 antigens in Human B-cell lines: An immuno-fluorescence and immunoelectron microscopy study. Blood 1993; 81: 1549–1557
  • De Rie M. A., Zeijlemaker W. P., van de Borne A. E. G.K. Inhibition, by vinca alkaloids and colchicine, of antigenic modulation induced by anti-CD19 monoclonal antibodies. Leukemia Res. 1988; 12: 135–141
  • Clayton L. K., Lerner A., Diener A. C., Hussey R. E., Koyasu S., Reinherz E. L. T-cell-receptor isoforms. Int. J. Cancer 1992; 7: 1–5
  • Chen L., Linsley P. S., Hellström K. E. Costimulation of T cells for tumor immunity. Immunol. Today 1993; 14: 483–486
  • Lamers C. H. J., van de Griend R. J., Braakman E., Ronteltap C. P. M., Benard J., Stoter G., Gratama J. W., Bolhuis R. L. H. Optimization of culture conditions for activation and large-scale expansion of human T lymphocytes for bispecific antibody-directed cellular immunotherapy. Int. J. Cancer 1992; 51: 973–979
  • Uberti J. P., Joshi I., Ueda M., Martilotti F., Sensenbrenner L. L., Lum L. G. Preclinical studies using immobilized OKT3 to activate human T cells for adoptive immunotherapy: optimal conditions for the proliferation and induction of non-MHC-restricted cytotoxicity. Cancer Immunol. Immunopathol. 1994; 70: 234–240
  • van de Winkel J. G. J., Capel P. J. A. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol. Today 1993; 14: 215–221
  • Brüggemann M. Evolution of the rat immunoglobulin γ heavy-chain gene family. Gene 1988; 74: 473–482
  • Norman D. J., Chatenoud L., Cohen D., Goldman M., Shield C. F. Consensus statement regarding OKT3-induced cytokine-release syndrome and human antimouse antibodies. Transplantation Proceedings 1993; 25: 89–92
  • Parlevliet K. J., Jonker M., ten Berge R. J. M., van Lier R. A. W., Wilmink J. M., Strengers P. F. W., Aarden L. A., Th P., Schellekens A. Anti-CD3 murine monoclonal iso-type swith variants tested for toxicity and immunologic monitoring in four chimpanzees. Transplantation 1990; 50: 889–892
  • Debets J. M. H., van de Winkel J. G. J., Ceuppens J. L., Dieteren I. E. M., Buurman W. A. Cross-linking of both FcγRI and FcγRII induces secretion of tumor necrosis factor by human monocytes, requiring high affinity Fc-FcγR interactions. J. Immunol. 1990; 144: 1304–1310
  • Duits A. J., Aarden L. A., Ernst L. K., Capel P. J. A., van de Winkel J. G. J. Isotype-specific cross-linking of select human Fcγ-Receptor isoforms triggers release of IL-6. Clin. Exp. Immunol. 1993; 92: 225–231
  • van Lier R. A. W., Boot J. H. A., Verhoeven A. J., De Groot E. R., Brouwer M., Aarden L. A. Functional studies with anti-CD3 heavy chain isotype switch-variant monoclonal antibodies: Accessory cell-independent induction of interleukin-2 responsiveness in T cell by ε-anti-CD3. J. Immunol. 1987; 139: 2873–2879
  • Parren P. W. H.I., Warmerdam P. A. M., Boeije L. C. M., Capel P. J. A., van de Winkel J. G. J., Aarden L. A. Characterization of IgG FcR-mediated proliferation of human T cells induced by mouse and human anti-CD3 monoclonal antibodies. J. Immunol. 1992; 148: 695–701
  • Kaneoka H., Perez-Rojas G., Sasasuki T., Benike C. J., Engleman E. G. Human T lymphocyte proliferation induced by a pan-T monoclonal antibody (anti-leu 4): heterogeneity of response is a function of monocytes. J. Immunol. 1983; 131: 158–164
  • Koolwijk P., Spierenburg G. T., Frasa H., Boot J. H. A., van de Winkel J. G. J., Bast B. J. E.G. Interaction between hybrid mouse monoclonal antibodies and the human high-affinity IgG FcR, huFcγRI, on U937. J. Immunol. 1989; 143: 1656–1662
  • Clark M., Bindon C., Dyer M., Friend P., Hale G., Cobbold R., Calne H., Waldmann H. The improved lytic function and in vivo efficacy of monovalent monoclonal CD3 antibodies. Eur. J. Immunol. 1989; 19: 381–388
  • Haagen I. A., Geerars A. J. G., Bast B. J. E.G., De Cast G. C., van de Winkel J. G. J., De Lau W. B. M. Evaluation of Fcγ receptor mediated T cell activation by two purified CD3×CD19 bispecific monoclonal antibodies with hybrid Fc domains. Therapeutic Immunology 1994; 1: 279–287
  • van de Winkel J. G. J., Anderson C. L. Biology of human Immunoglobulin G Fc receptors. J. Leukocyte Biol. 1991; 49: 551–524
  • Looney R. J., Abraham G. N., Anderson C. L. Human monocytes and U937 cells bear two distinct Fc receptors for IgG. J. Immunol. 1986; 136: 164–1647
  • Haagen I. A., Geerars A. J. G., Clark M. R., van de Winkel J. G. J. Interaction of human monocyte Fcγ receptors with rat IgG2b: identification of a new polymorphism. J. Immunol. 1994, in press, Feb. 1995
  • Koolwijk P., van de Winkel J. G. J., Otten I., Bast B. J. E.G. Human monocyte-mediated cytotoxicity towards erythrocytes induced by hybrid mouse monoclonal antibodies: effect of antibody binding valency on IgG-FcγR interaction. Immunology 1992; 75: 336–342
  • Ferran C., Sheehan K., Dy M., Schreiber R., Merite S., Landais P., Noel L. H., Grau G., Bluestone J., Bach J. F., Chatenoud L. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo Tcell activation. Eur. J. Immunol. 1990; 20: 509–515
  • Haagen I. A., Geerars A. J., De Lau W. B., Clark M. R., van de Griend R. J., Bast E. J. E.G., De Gast B. C. Killing of autologous B-lineage malignancy using CD3×CD19 bispecific monoclonal antibody in end stage leukemia and lymphoma. Blood 1994; 84: 556–563
  • Spits H., Schooten W. V., Keizer H., van Seventer G., van de Rijn M., Terhorst C., De Vries J. E. Alloantigen recognition is preceded by nonspecific adhesion of cytotoxic T cell and target cells. Science 1986; 232: 403–405
  • Krensky A. M., Robbins E., Springer T. A., Burakoff S. J. LFA-1, LFA-2 and LFA-3 antigens are involved in CTL-target conjugation. J. Immunol. 1984; 132: 2180–2182
  • Miedema F., Tromp J. F., van het Veer N I. B., Poppema S., Melief C. J. M. Lymphocyte function-associated antigen 1 (LFA-1) is a marker of mature (immunocompetent) lymphoid cells. A survey of lymphoproliferative diseases in man. Leukemia Res. 1985; 9: 1099–1104
  • De Boer M., Parren P., Dove J., Ossendorp F., van de Horst G., Reeder J. Functional characterization of a novel anti-B7 monoclonal antibody. Eur. J. Immunol. 1992; 22: 3071–3075
  • Linsley P. S., Clark E. A., Ledbetter J A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB1. Proc. Natl. Acad. Sci. USA 1990; 87: 5031–5035
  • Azuma M., Cayabyab M., Phillips J. H., Lanier L. Requirements for CD28-dependent T cell-mediated cytotoxicity. J. Immunol. 1993; 150: 2091–2101
  • Chen L., Ashe S., Brady W. A., Hellström I., Hellström K. E., Ledbetter J. A., McGowan P., Linsley P. S. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 1093–1102
  • Hui K., Grosveld F., Festenstein H. Rejection of trans-plantable AKR leukaemia cells following MHC DNA-mediated transformation. Nature 1984; 311: 770–752
  • Medeiros L. J., Weiss L. M., Picker L. J., Clayberger C., Horning S. J., Krensky A. M., Warnke R. A. Expression of LFA-1 in Non-Hodgkin's lymphoma. Cancer 1989; 63: 255–259
  • Horst E., Meijer C. J. L.M., Radaszkiewicz T., Ossekoppele G. J., van Krieken J. H. J.M., Pals S. T. Adhesion molecules in the prognosis of diffuse large-cell lymphoma expression of a lymphocyte homing, receptor (CD44), LFA-1(CD11 a/18), and ICAM-1 (CD54). Leukemia 1990; 4: 595–599
  • Stauder R., Greil R., Schulz T. F., Thaler J., Gattinger C., Radaskiewicz T., Dierich M. P., Huber H. Expression of leucocyte function-associated antigen-1 and 7F7-antigen, an adhesion molecule related to intercellular adhesion molecule-1 (ICAM-I) in non-Hodgkin lymphomas and leukemias: possible influence on growth pattern and leukaemic behaviour. Clin. Exp. Immunol. 1989; 77: 234–238
  • Delabie J., Ceuppens J. L., Vandenberghe P., De Boer M., Coorevits L., De Wolf-Peeters C. The B7/BB1 antigen is expressed by Reed-Sternberg cells of Hodgkin's disease and contributes to the stimulating capacity of Hodgkin's disease-derived cell lines. Blood 1993; 82: 2845–2852
  • Freeman G. J., Freedman A. S., Segil J. M., Lee G., Whitman J. F., Nadler L. M. B7, anew member of the Ig super-family with unique expression on activated and neoplastic B cells. J. Immunol. 1989; 143: 2714–2722
  • Safrit J. T., Bonavida B. Hierarchy of in vitro sensitivity and resistance of tumor cells to cytotoxic effector cells, cytokines, drugs and toxins. Cancer Immunol. Immunother. 1992; 34: 321–328
  • Horning S. J. Treatment approaches to the low-grade lymphomas. Blood 1994; 83: 881–884
  • Nelson H. Targeted Cellular Immunotherapy with Bifunctional Antibodies. Cancer Cells 1991; 3: 163–172
  • Haagen I. A., De Lau W. B. M., Bast B. J. E.G., Geerars A. J. G., Clark M. R., De Gast B. C. Unprimed CD4+ and CD8+ T cells can be rapidly activated by a CD3×CD19 bispecific antibody to proliferate and become cytotoxic. Cancer Immunol. Immunother. 1994; 39: 391–396
  • Clark E. A., Ledbetter J. A. How B and T cells talk to each other. Nature 1994; 367: 425–428
  • Weiner G. J. Bispecific IgG and IL-2 therapy of a syngenic B-cell lymphoma in immunocompetent mice. Int. J Cancer 1992; 7: 63–66
  • Slaper-Cortenbach I. C. M., Admiraal L. G., van Leeuwen E. F., Kerr J. M., von dem Borne A. E. G., Kr, Tetteroo A. T. Effective purging of bone marrow by a combination of im-munorosette depletion and complement lysis. Exp. Hematol. 1990; 18: 49–54
  • Bast R. C., De Fabritiis P., Lipton J., Gelber R., Maver C., Nadler L., Sallen S., Ritz J. Elimination, of malignant clonogenic cells from human bone marrow using multiple monoclonal antibodies and complement. Cuncer Res. 1985; 45: 499–503
  • Rosenfeld C., Goutner A., Choquet C., Venuat A. M., Pico J. L. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature 1977; 267: 841–843
  • Haagen I. A., Geerars A. J. G., De Lau W. B. M., Bast E. J. E.G, De Gast G. C. The efficacy of bispecific antibody in a clonogenic assay; the effect of repeated addition of BsAb and IL.-2. Blood 1995, in press
  • Kroesen B. J., Haar A. T., Spakman H., Willemse P., Sleijfer D., Th, De Vries E. G. E., Mulder N. H., Berendsen H. H., Limburg P. C., The T. H., De Letj L. Local antitumor treatment in carcinoma patients with bispecific-monoclonal-antibody-redirected T cells. Cancer Immunol. Immunother. 1993; 37: 400–407
  • De Gast G. C., Haagen I. A., van Houten A. A., Klein S., Duits A. J., De Weger R. A., Vroom M., Th, Clark M. R., Philips J., Geerars A. J. G., De Lau W. B. M., Bast E. J. E.G. T cell activation after intravenous administration of CD3×CD19 bispecific antibody in patients with B cell malignancy. A phase I study. Br. J. Haemat. 1995, submitted
  • Roosnek E. E., van Lier R. A., Aarden L. A. Two monoclonal anti-LCD3 antibodies can induce different events in human T lymphocyte activation. Eur. J. Immunol. 1987; 17: 1507–1510
  • Bohlen H., Hopff T., Manzke O., Engert A., Kube D., Wickramanayake P. D., Diehl V., Tesch H. Lysis of malignant B cells from patients with B-chronic lymphocytic leukemia by autologous T cells activated with CD3 × CD 19 bispecific antibodies in combination with bivalent CD28 antibodies. Blood 1993; 82: 1803–1812
  • Pohl C., Denfeld R., Renner C., Jung W., Bohlen H., Sahin U., Hombach A., van Lier R., Schwonzen M., Diehl V., Pfreundschuh M. CD30-antigen-specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for treatment of Hodgkin's lymphoma. Int. J. Cancer 1993; 54: 820–827
  • Jung G., Freimann U., Marschall Z. V., Reisfeld R. A., Wilmanns W. Target cell-induced T cell activation with bi- and trispecific antibody fragments. Eur. J. Immunol. 1991; 21: 2431–2435
  • Schwartz R. H. Costimulation of T lymphocytes: The role of CD28, CLTA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065–1068
  • Freedman A. S., Freeman G. J., Rhynhart K., Nadler L. M. Selective induction of B7/BB1 on interferon-y stimulated monocytes: a potential mechanism for amplification of T cell activation through the CD28 pathway. Cell. Immunol. 1991; 137: 429–437
  • Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Ann. Rev. Immunol. 1989; 7: 445–480
  • Beverly B., Kang S. M., Lenardo M. J., Schwartz R. H. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int. Immunol. 1992; 4: 661–671
  • Kang S. M., Beverly B., Tran A. C., Brorson K., Schwartz R. H., Lenardo M. J. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 1992; 257: 1134–1138
  • Young J. W., Koulova L., Soergel S. A., Clark E. A., Steinman R. M., Dupont B. The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J. Clin. Invest. 1992; 90: 229–237
  • Vlasveld L. T., Hekman A., Vyth-Dreese F. A., Rankin E. M., Scharenberg J. G. M., Voordouw A. C., Sein J. J., Dellemijn T. A. M., Rodenhuis S., Melief C. J. M. A phase I study of prolonged continuous infusion of low dose recombinant interleukin-2 in melanoma and renal cell cancer. Part II: immunological aspects. Br. J. Cancer 1993; 68: 559–567
  • Foa R., Guarini A., Gansbacher B. IL2 treatment for cancer: from biology to gene therapy. Br. J. Cancer 1992; 66: 992–998
  • Siegel J. P., Puri R. K. Interleukin-2 toxicity. J. Clin. Oncol. 1991; 9: 694–704
  • Janssen R. A. J., Mulder N. H., The T. H., De Leij L. The immunobiological effects of interleukin-2 in vivo. Cancer Immunol. Immunother. 1994; 39: 207–216
  • Konrad M. W., Hemstreet G., Hersh E. M., Mansell P. W. A., Mertelsmann R., Kolitz J. E., Bradley E. C. Pharmacokinetics of recombinant Interleukin 2 in humans. Cancer Res. 1990; 50: 2009–2017
  • Ratain M. J., Priest E. R., Janisch L., Vogelzang N. J. A phase I study of subcutaneous recombinant interleukin-2 and interferon alfa-2a. Cancer 1993; 71: 2371–2376
  • Janssen R. A. I., Buter J., Straatsma E., Heijn A. A., Sleijfer D., Th, De Vries E. G. E., Mulder N. H., The H., De Leij L. HLA-Dr-expressing CD8-bright cells are only temporarily present in the circulation during subcutaneous recombinant interleukin-2 therapy in renal cell carcinoma patients. Cancer Immunol. Immunother. 1993; 36: 198–204
  • Bohlen H., Manzke O., Patel B., Moldenhauer G., Dörken B., von Fliedner V., Diehl V., Tesch H. Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res. 1993; 53: 4310–4314
  • June C. H., Ledbetter J. A., Linsley P. S., Thompson C. B. Role of the CD28 receptor in T-cell activation. Immunol. Today 1990; 11: 211–216
  • Martin P. J., Ledbetter J. A., Morishita Y., June C. H., Beatty P. G., Hansen J. A. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 1986; 136: 3282–3287
  • Renner C., Jung W., Sahin U., Denfeld R., Pohl C., Trümper L., Hartmann F., Diehl V., van Lier R., Pfreundschuh M. Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science 1994; 264: 833–835
  • Fleischer B. Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in culture. Nature 1984; 308: 365–367
  • Garrido M. A., Perez P., Titus J. A., Valdayo M. J., Winkler D. F., Barbieri S. A., Wunderlich J. R., Segal D. M. Targeted cytotoxic cells in human peripheral blood lymphocytes. J. Immunol. 1990; 144: 2891–2898
  • Nishimura T., Nakamura Y., Takeuchi Y., Tokuda Y., Iwasawa M., Kawasaki A., Okumura K., Habu S. Generation, propagation, and targeting of human CD4+ helper/killer T cells induced by anti-CD3 monoclonal antibody plus recombinant IL-2. J. Immunol. 1992; 148: 285–291
  • Smith M. J., Norihisa Y., Ortaldo J. R. Multiple cytolytic mechanisms displayed by activated human peripheral blood T cell subsets. J. Immunol. 1992; 148: 55–62
  • Qian J. H., Titus J. A., Andrew S. M., Mezzanzanica D., Garrido M. A., Wunderlich J. R., Segal D. M. Human peripheral blood lymphocytes targeted with bispecific antibodies release cytokines that are essential for inhibiting tumor growth. J. Immunol. 1991; 146: 3250–3256
  • Damle N. K., Mohagheghpour N., Hansen J. A., Engleman E. G. Alloantigen-specific cytotoxic and suppressor T lymphocytes are derived from phenotypically distinct precursors. J. Immunol. 1983; 131: 2296–2300
  • van Lier R. A. W., Boot J. H. A., De Groot E. R., Aarden L. A. Induction of T cell proliferation with anti-CD3 switch-variant monoclonal antibodies: effects of heavy chain isotype in monocyte-dependent systems. Eur. J. Immunol. 1987; 17: 1599–1604
  • Parren P. W. H.I., Warmerdam P. A. M., Boeije L. C. M., Arts J., Westerdaal N. A. C., Vlug A., Capel P. J. A., Aarden L. A., van de Winkel J. G. J. On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. J. Clin. Invest. 1992; 90: 1537–1546
  • Hoffman T., Tripathi A. K., Lee Y. L., Bonvini E., Golding B. Inflammatory mediator release from human monocytes via immobilized Fc receptors. Transplantation 1992; 54: 343–346
  • Frenken L. A. M., Koene R. A. P., Tax W. J. M. The role of antibody isotype in IFN-y and IL-2 production during anti-CD3-induced T cell proliferation. Transplantation 1991; 51: 881–887
  • Krutmann J., Kirnbauer R., Köck A., Schwarz T., Schöpf E., May L. T., Sehgal P. B., Luger T. A. Cross-linking Fc receptors on monocytes triggers IL-6 production: Role in anti-CD3-induced T cell activation. J. Immunol. 1990; 145: 1337–1342
  • Tax W. J. M., Holtrop S., Koene R. A. P. Clinical implications of the polymorphic interaction of murine IgG2b and IgG1 with human Fc receptors. Transplant Immunol. 1993; 1: 252–254
  • Greenman J., Hogg N., Nikoletti S., Slade C., Stevenson G., Glennie M. Comparitive efficiencies of bispecific F(ab'y)2 and chimeric mouse/human IgG antibodies in recruiting cellular effector for cytotoxicity via Fcy receptors. Cancer Immunol. Immunother. 1992; 34: 361–369
  • Press O. W., Appelbaum F., Ledbetter J. A., Martin P. J., Zarling J., Kidd P., Donnall Thomas E. Monoclonal antibody 1F5 (anti-CD20) scrotherapy of human B cell lymphomas. Blood 1987; 69: 584–591
  • Allebes W., Knops R., Herold M., Huber C., Haanen C., Capel P. Immunotherapy with monoclonal anti-idiotypic antibodies: tumour reduction and lymphokine production. Leukemia Res. 1991; 15: 215–222
  • Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature 1988; 332: 323–327
  • Bruynck A., Seemann G., Bosslet K. Characterisation of a humanised bispecific monoclonal antibody for cancer therapy. Br. J. Cancer 1993; 67: 436–440
  • Phelps J. L., Beidler D. E., Jue R. A., Unger B. W., Johnson M. J. Expression and characterization of a chimeric bi-functional antibody with therapeutic applications. J. Immunol. 1990; 145: 1200–1204
  • Shalaby M. K., Shepaled H. M., Presta L., Rodrigues M. L., Beverly P. C. L., Feldmann M., Carter P. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J. Exp. Med. 1992; 175: 217–225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.