66
Views
9
CrossRef citations to date
0
Altmetric
Original Article

DNA Methylation and Developmental Genes in Lymphomagenesis—More Questions Than Answers?

, , &
Pages 211-220 | Received 28 Apr 1996, Published online: 01 Jul 2009

References

  • Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science 1975; 187: 226–232
  • Monk M. Methylation and the X‐chromosome. Bioessays 1986; 4: 204–208
  • Holliday R. DNA Methylation: Molecular Biology and Biological Significance. Birkhauser Verlag, Basel 1992
  • Clark S. J., Harrison J., Frommer M. CpNpG methylation in mammalian cells. Nature Genet. 1995; 10: 20–27
  • Riggs A. D., Jones P. A. 5‐methylcytosine. gene regulation and cancer. Adv. Cancer Rex 1983; 40: 1–30
  • Bird A., Taggart M., Frommer M., Miller O. J., McLeod D. A fraction of the mouse genorrie that is derived from islands of non‐methylated CpG‐rich DNA. Cell 1985; 40: 91–99
  • Naveh‐Many T., Cedar H. Active gene sequences are undermethylated. Proc. Natl. Acad. Sci. (USA). 1981; 78: 4246–4250
  • Gardiner‐Garden M., Frommer M. CpG islands in vertebrate genomes. J. Mol. Bid. 1987; 196: 261–282
  • Duncan B. K., Miller J. H. Mutagenic deamination of cytosine residues in DNA. Nature 1980; 287: 560–561
  • Bestor T. H., Ingram V. M. Two methyltransferases from murk erythroleukemia cells: purification, sequence specificity and mode of action with DNA. Proc. Natl. Acad. Sci. (USA) 1983; 80: 5559–5563
  • Yen R. W. C., Vertino P. M., Nelkin B. D., Yu J. J., El‐Deiry W., Cumaraswamy A., Lennon G. G., Trask B. J., Celano P., Baylin S. J. Isolation and characterisation of the cDNA encoding human DNA methyltransferase. Nucl. Acids Res. 1992; 20: 2287–2291
  • Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Bid. 1988; 203: 971–983
  • Jost J. P. Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5‐methyldeoxycytidine. Proc. Natl. Acad. Sci. (USA). 1993; 90: 46844688
  • Paroush Z., Keshet I., Yisraeli J., Cedar H. Dynamics of demethylation and activation of the α‐actin gene in myoblasts. Cell 1990; 63: 1229–1237
  • Holliday R. The inheritance of epigenetic defects. Science 1987; 238: 163–170
  • Keshet I., Yisraeli J., Cedar H. Effect of regional DNA methylation on gene expression. Proc. Natl. Acad. Sci. (USA). 1985; 82: 2560–2564
  • Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–365
  • Monk M., Boabelik M., Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 1987; 99: 371–382
  • Meehan R. R., Lewis J. D., McKay S., Kleiner E. L., Bird A. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 1989; 58: 499–507
  • Ehrlich M., Ehrlich K. C. DNA Methylation. Molecular Biology and Biological Significance. Birkhauser Verlag, Base 1993
  • Taylor S. M., Jones P. A. Multiple new phenotypes induced in 10T1/2 3T3 cells treated with 5‐azacytidine. Cell 1979; 17: 771–179
  • Baylin S. B., Makos M., Wu J., Yen R. W. C., de Bustros A., Vertino P., Nelkin B. D. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 1991; 3: 383–390
  • De Simone J., Heller P., Hall L., Zwiers D. 5‐azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. (USA) 1982; 79: 4428–4431
  • Charache S., Dover G., Smith K., Talhot C. C., Moyer M., Boyer S. Treatment of sickle cell anemia with 5‐azacytidine results in increased fetal haemoglobin products and is associated with non‐random hypomethylation of DNA around the γ‐α‐β‐globin gene complex. Proc. Natl. Acad. Sci. (USA). 1983; 80: 4842–4846
  • Gama‐Sosa M. A., Slagel V. A., Trewyn R. W., Oxenhandler R., Kuo K. C., Gehrke C. W., Ehrlich M. The 5‐methylcytosine content of DNA from human tumors. Nucl. Acids Rex 1983; 11: 6883–6894
  • Laird P. W., Jackson‐Grusby L., Fazell A., Dickinson S. L., Jung W. E., Li E., Weinberg R. A., Jaenisch R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995; 81: 197–205
  • El‐Deiry W. S., Nelkin B. D., Celano P., Yen R. ‐W. C., Falco J. P., Hamilton S. R., Baylin S. B. High expression of the methyltransferase gene characterises human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. (USA). 1991; 88: 3470–3474
  • MacLeod A. R., Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J. Bid. Chern. 1995; 270: 80377–8043
  • Ohtani‐Fujita N., Fujita T., Aoike A., Osifchin N. E., Robbins P. D., Sakai T. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor suppressor gene. Oncogene. 1993; 8: 1063–1067
  • Herman J. G., Latif F., Weng Y., Lerman M. I., Zbar B., Liu S., Samid D., Duan D. S. R., Gnarra J. R., Linehan W. M., Baylin S. B. Silencing of the VHL tumor‐suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 1994; 91: 9700–9704
  • Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/cDKN2/MTS1 in human cancers. Nature Med. 1995; 1: 686–692
  • Braun T., Bober E., Buschhausen‐Denker G., Kotz S., Grzeschik K. H., Arnold H. H. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the M>;f gene products. EMBO J. 1989; 8: 3617–3625
  • Kay P. H., Taylor J., Kees U. R., Baker D. L., Spagnolo D. Myf‐3 hypermethylation in malignant lymphoproliferative disorders. Br. J. Cancer. 1995; 62: 797–799
  • Jones P. A., Wolkowicz M. J., Hanington M. A., Gonzalez F. Methylation and expression of the Myo‐D1 determination gene. Philos. Trans, R. Soc. London 1990; 326: 277–284
  • Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51: 987–1000
  • Jones P. A., Wolkowicz M. J., Rideout W. M., III, Gonzales F. A., Marziasz G. A., Coetzee G. A., Tapscott S. J. De novo methylation of the MyoDl CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. (USA) 1990; 87: 6117–21
  • Song K., Yaoqi W., Sassoon D. Expression of Hox‐7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 1992; 360: 477–481
  • Sorrentino V. R., Peperkok R., Davis R. L., Ansorge W., Philipson L. Cell proliferation inhibited by MyoD. Nature 1990; 345: 813–815
  • Crescenzi M., Fleming T. P., Lassar A. B., Weintraub H., Aaronson S. A. MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc. Natl. Acad. Sci. (USA) 1990; 87: 8442–8446
  • Halevy O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., Berach D., Lassar A. B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 1995; 267: 1018–1021
  • Tapscott S. J., Davis R. L., Thayer M. I., Cheng P. ‐F., Weintraub H., Lassar A. B. Myo‐DI: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 1988; 242: 405–411
  • Beuche M., Senni M. I., Grossi A. M., Zappelli F., Polimeni M., Arnold H. H., Cossu G., Molinaro M. TPA‐induced differentiation of human rhabdomyosarcoma cells: expression of the myogenic regulatory factors. Exp. Cell Rex 1993; 208: 205–217
  • Stoye J. P., Moroni C., Coffin J. M. Virological events leading to spontaneous AKR thymomas. J. Virol. 1991; 65: 1273–1285
  • Kay P. H., Jacobsen P. F., Taylor J., Spagnolo D. The significance of DNA methylation in Cancer. Adv. Anat. Path. 1995; 2: 353–361
  • Adams B., Dorfler P., Aguzzi A., Koznik Z., Urbanck P., Maurer‐Fogy I., Busslinger M. Pax‐5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 1992; 6: 1589–1607
  • Maulbecker C. C., Gruss P. The oncogenic potential of Pax genes. EMBO J. 1993; 12: 2361–2367
  • Tsukamoto K., Nakamura Y., Niikawa N. Isolation of two isoforms of the PAX3 transcripts and their tissue specific abberative expression in human adult tissues. Genet. 1994; 93: 270–274
  • Schafer B. W., Czerny T., Bernasconi M., Genini M., Busslinger M. Molecular cloning and characterisation of a human PAX‐7 cDNA expressed in normal and neoplastic myocytes. Nucl. Acids Res. 1994; 22: 4574–4582
  • Goulding M., Chalepakis G., Deutsch V., Erselius J. R., Gnss P. Pax‐3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 1991; 10: 1135–1147
  • Goulding M., Paquette A. Neural Tube Defects. Ciba Foundation Symposium 181, Wiley, Chichester 1994; 103–117
  • Kioussi C., Gross M. K., Gruss P. Pax3: a paired domain gene as a regulator in PNS myelination. Neuron. 1995; 15: 553–562
  • Chalepakis G., Jones F. S., Edelman G. M., Gnss P. Pax‐3 contains domains for transcription activation and transcription inhibition. Proc. Natl. Acad. Sci. USA 1994; 91: 12745–12749
  • Stuart E. T., Kioussi C., Gruss P. Mammalian PAX genes. Annu. Rev. Genet. 1993; 27: 219–236
  • Epstein D. J., Vekemans M., Gros P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within a paired homeodomain of Pax‐3. Cell 1991; 67: 767–774
  • Bober E., Franz T., Arnold H. H., Gnss P., Tremblay P. Pax‐3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 1994; 120: 603–612
  • Jostes B., Walther C., Gruss P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 1991; 33: 27–38
  • Yaffe D., Saxel D. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 1977; 270: 725–727
  • Spagnolo D. V., Taylor J., Carrello S., Saueracker E., Kay P. H. Southern blot analysis of lymphoproliferative disorders: use and limitations in routine surgical pathology. Pathology 1994; 26: 268–275

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.