62
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Antisense Strategy: Biological Utility and Prospects in the Treatment of Hematological Malignancies

&
Pages 267-281 | Received 12 May 1996, Published online: 01 Jul 2009

References

  • Nellen W., Lichtenstein C. What makes an mRNA anti‐sense‐itive?. Trends Bid. Sci. 1993; 18: 419–423
  • Hélène C. Control of oncogene expression by antisenbe nucleic acids. Eur. J. Cancer‐. 1994; 30A: 1721–1726
  • Bock L. C., Griffin L. C., Latham A., Vermaas E. H., Toole J. J. Selection of single‐stranded DNA molecules that bind and inhibit human thrombin. Nature 1992; 355: 564–566
  • Fenster S. D., Wagner R. W., Froehler B. C., Chin D. J. Inhibition of human immunodeficiency virus type I‐env expression by C‐S oligonucleotides specific for Rev response element stem loop. J. Biochemistry 1994; 33: 8391–8398
  • Bacon T., Wickstrom E. Daily addition of an anti‐c‐myc DNA oligomer induces granulocytic differentiation or human promyelocytic leukemia HL‐60 cells in both serum‐containing and serum‐free media. Oncogene Res. 1991; 6: 21–32
  • Daaka Y., Wickstrom E. Target dependence of antisense oligodeoxynucleotide inhibition of c‐Ha‐ras p21 expression and focus formation in T‐24–transformed NIH3T3 cells. Oncogene Res. 1990; 5: 267–275
  • Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennet C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule I expression by two distinct mechanisms. J. Biol. Chem. 1991; 18162–18171
  • Goodchild J. Antisense inhibitors of gene expression. In Oligodeoxunucleotides, J. Cohen. Macmillan, London 1989; 53–77
  • Becker D., Meier C., Herlyn M. Proliferation of malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against fibroblast growth factor. EMBO J. 1989; 8: 3685–3691
  • Morrison R. Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes. J. Biol. Chem. 1991; 728–733
  • Rajagopal P., Feigon J. NMR studies of triple‐strand formation from the homopurine‐homopryrimidine deoxyribonucleotides d(GA)h and d(TC)h. J. Biochemistry 1989; 28: 7859–7870
  • Radhakrishnan I., Gao X., de los Santos C., Live D., Patel D. J. NMR structural studies of intramolecular (Y+)n (R+)n (Y‐)n DNA triplexes in solution: imino and amino proton and nitrogen markers of GTA base triple formation. J. Biochemistry 1991; 30: 9022–9030
  • Cooney M., Czernuszewicz G., Postel E. H., Flint J., Hogan M. E. Site‐specific oligonucleotide binding represses transcription of the human c‐myc gene in vitro. Science 1989; 241: 456–459
  • Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide‐directed triple‐helix formation. Science 1991; 251: 1360–1363
  • Thuong N. T., Hélène C. Sequence‐specific recognition and modification of double‐helical DNA. Angew. Chem. Int. Eng. 1993; 32: 666–690
  • Dervan P. B. Reagents for the site‐specific cleavage of megahase DNA. Nature 1992; 359: 87–88
  • Stobel S. A., Doucette‐Stamm L. A., Riba L., Housman D. E., Dervan P. B. Site‐specific cleavage of human chromosome mediated by triple‐helix formation. Science 1991; 254: 1639–1642
  • Pei D., Corey D. R., Schultz P. G. Site‐specific cleavage of duplex DNA by a semisynthetic nuclease via triple‐helix formation. Proc. Natl. Acad. Sci. USA 1990; 87: 9858–9862
  • Strobel S. A., Dervan P. B. Single‐site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 1991; 350: 172–174
  • Rothenburg M., Johnson G., Laughlin C., Green I., Cradock J., Sarver N., Cohen J. S. Oligonucleotides as antisense inhibitors of gene expression: therapeutic implications. J. Natl. Cancer Inst. 1989; 81: 1539–1544
  • Mukhopadhyay T., Tainsky M., Cavender C., Roth J. A. Specific inhibition of K‐rus expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res. 1991; 51: 1744–1748
  • Cameron F. H., Jennings P. A. Specific gene suppression by engineered ribozymes in monkey cells. Proc., Natl. Acad. Sci. USA 1989; 86: 9139–9143
  • Walder R. Y., Walder J. A. Role of RNase H in hybrid‐arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 1988; 85: 5011–5015
  • Woolf T. M., Melton D. A., Jennings C. G. B. Specificity of antisense oligonucleotides in vivo. Proc., Natl. Acad. Sci. USA 1992; 89: 7305–7309
  • Gao W. Y., Han F. S., Storm C., Egan W., Cheng Y. C. Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for anti‐sense technology. Mol. Pharmacol. 1992; 41: 223–229
  • Cazenave C., Stein C. A., Loreau N., Thuong N. T., Neckers L. M., Subasinghe C., Hélène C., Cohen J. S., Tolmé J. J. Comparitvie inhibition of rabbit globin mRNA translation by modified antisense oligodeoxunucleotides. Nucleic Acids Res. 1989; 17: 4255–4273
  • Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that hind specific ligands. Nature 1990; 346: 818–822
  • Bock L. C., Griffin L. C., Latham J. A., Ve E. H., Toole J. J. Selection of single‐stranded DNA molecules that bind and inhibit human thrombin. Nature 1992; 355: 5634–566
  • Yakubov L., Khaled Z., Zhang L. M., Truneh A., Vlassov V., Stein C. A. Oligonucleotides interact with recombinant CD4 at multiple sites. J. Bid. Chem. 1993; 268: 18818–18823
  • Perez J. R., Li Y., Stein C. A., Majumder S., van Oorschot A., Narayanan R. Sequence independent induction of Sp‐1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 1994; 91: 5957–5961
  • Yaniamoto S., Kataoka T., Kuramoto E., Yano O., Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN‐mediated natural killer activity. J. Immunol. 1992; 148: 4072–4076
  • Rathhone M. P., Middlemiss P. J., Gushers J. W., Deforge S., Costello P., Del Maestro R. F. Purine nucleo‐sides and nucleotides stimulate proliferation of a wide range of cell types. In Vitro Cell dev. Biol. 1992; 28A: 529–536
  • Kamano H., Tanaka T., Yamaji Y., Ikeda K., Hata Y., Shiotani T., Ishida T., Takahara I., Iriao S. E. coli gpt gene expression effects in K562 human leukemia cell proliferation and erythroid differentiation altered by mycophenolic acid. Biochem. Int. 1992; 26: 537–543
  • Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents‐Is the bullet really magical?. Science 1993; 261: 1004–1012
  • Carter G., Lemoine N. R. Antisense technology for cancer therapy: does it make sense?. Br. J. Cancer. 1993; 67: 869–876
  • Gao W., Han F., Storm L., Egan W., Cheung Y. Phosphorothioate oligonucleotides are inhibitors for human DNA polymerases and RNAse H: implications for antisense technology. Mol. Pharmacol. 1992; 41: 223–229
  • Tidd D. M., Warenius H. M. Partial protection of oncogene. anti‐sense oligodeoxynucleotides against serum nuclease degradation using terminal methylophosphonate groups. Br. J. Cancer. 1989; 60: 343–350
  • Tidd D. M. Methylphosphonodiester/phosphodiester chimeric oligodeoxynucleotides. Biochem. Soc. Trans. 1992; 20: 746–749
  • Tidd D. M. A potential role for antisense oligonucleotide analogues in the development of oncogene targeted cancer chemotherapy. Anticancer Res. 1990; 10: 1169–1182
  • Tidd D. M. Synthetic oligonucleotides as therapeutic agents. Br. J. Cancer. 1991; 63: 6–8
  • Agrawal S., Temsamani J., Tang J. Y. Pharmacokinetics, biodistribution and stability of oligodeoxynucleotide phosphorothioates in mice. Proc., Natl. Acad Sci. 1992; 88: 7595–7599
  • O'Brien S. G., Kirkland M. A., Goldman J. M. Antisense therapy for malignant disease. Eur. J. Cancer. 1994; 30A: 1160–1164
  • Loke S. H., Stein C., Zhang X. H., Mori K., Nakanishi M., Subashinghe C., Cohen J. S., Neckers J. M. Characterization of oligonucleotide transport into living cells. Proc. Natl Acad. Sci. 1989; 86: 3476–3478
  • Geselowitz D. A., Neckers L. M. Analysis of oligonucleotide binding. internalization. and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Devel. 1992; 2: 17–25
  • Boutarine A. S., Boiziau C., Le Doan T., Toulmé J. J., Hélène C. Effect of the terminal phosphate derivitization of β and α‐oligodeoxynucleotides on their antisense activity in protein biosynthesis. stability and uptake by eukaryotic cells. Biochemie. 1992; 74: 485–489
  • Citro G., Perroti D., Cucco C., D'Agnano I., Sacchi A., Zupi O., Calabretta B. Inhibition of leukaemia cell proliferation by receptor‐mediated uptake of c‐myb antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 1992; 89: 7031–7035
  • Lasic D. D., Papahadjopoulos D. Liposomes revisited. Science 1995; 267: 1275–1276
  • Chatterjee S., Johnson P. R., Wong K. K. Dual‐target inhibition of HIV‐1 in vitro by means of an adeno‐associated virus antisens vector. Science 1992; 258: 1485–1487
  • Martiat P., Lewalle P., Taj A. S., Philippe M., Larondelle Y., Vaerman J. L., Wildman C., Goldman J. M., Michaux J. L. Retrovirally transduced antisense sequences stably suppress P210BCR‐ABL expression and inhibit the proliferation of BCWABL‐containing cell lines. Blood 1993; 81: 502–509
  • Miller D. Human gene therapy comes of age. Nature 1992; 357: 455–460
  • Gutierrez A. A., Lemoine N. R., Sikora K. Gene therapy of cancer. Lancet 1992; 339: 715–721
  • Calabretta B., Sims R. B., Valtieri M., Caracciolo D., Szczylik C., Venturelli D., Ratajczak M., Beran M., Gewirtz A. M. Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c‐myb antisense oligodeoxynucleotides, an in vitro study relevant to bone marrow purging. Proc. Natl. Acad. Sci. USA 1991; 88: 2351–2355
  • Clark S. S., McLaughlin J., Crist W. M., Champlin R., Writte O. N. Unique forms of the ab1 tyrosine kinase distinguish Ph1‐positive CML from Ph1‐positive ALL. Science 1987; 235: 85–88
  • Lugo T. G., Pendergast A. M., Muller A. J., Witte O. N. Tyrosine kinase activity and transformation potency of bcr‐abl oncogene products. Science 1990; 247: 1079–1082
  • Pendergast A. M., Muller A. J., Havlik M. H., Maru Y., Witte O. N. BCR sequences essential for transformation by the BCR‐ABL oncogene bind to the ABL‐SH2 regulatory domain in a non‐phospho‐tyrosine‐dependent manner. Cell 1991; 66: 161–171
  • McLaughlin J., Chianese E., Witte O. N. In vitro transformation of immature hematopoietic cells by the p210 bcdabl oncogene product of the Philadelphia chromosome. Proc. Natl. Acad. Sci. USA 1987; 84: 6558–6562
  • Daley G. Q., Van Etten R. A., Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830
  • Daley G. Q., Ben‐Neriah Y. Implicating the bcr/abl gene in the pathogenesis of Philadelphia chromosome‐positive human leukemia. Adv. Cancer Res. 1991; 57: 151–184
  • Voncken J. W., Morris C., Pattengale P., Dennert G., Kikly C., Groffen J., Heisterkamp N. Clonal development and karyotype evolution during leukemogenesis of BCWABL transgenic mice. Blood 1992; 79: 1029–1036
  • Szczylik C., Skorski T., Nicolaides N. C., Manzella L., Malaguarnera L., Venturelli D., Gewirtz A. M., Calabretta B. Selective inhibition of leukemia cell proliferation by bcr‐abl antisense oligodeoxynucleotides. Science 1991; 253: 562–565
  • Skorski T., Nieborowska‐Skorska M., Barletta C., Malaguamera L., Szczylik C., Chen S. T., Lange B., Calabretta B. Highly efficient elimination of Philadelphia1 leukemic cells by exposure to bcr/abl antisense oligodeoxynucleotides combined with mafosfamide. J. Clin. Invest 1993; 92: 194–202
  • De Fabritiis P., Amadori S., Calabretta B., Mandelli F. Elimination of clonogenic Philadelphia‐positive cells using BCR‐ABL antisense oligodeoxynucleotides. Bone marrow transplantation 1993; 12: 261–266
  • Snyder D. S., Wu Y., Wang J. L., Rossi J. J., Swiderski P., Kaplan B. E., Forman S. J. Ribozyme‐mediated inhibition of bcr‐abl gene expression in a Philadelphia chromosome‐positive cell line. Blood 1993; 82: 600–605
  • Skorski T., Szczylik C., Malaguamera L., Calabretta B. Gene‐targeted specific inhibition of chronic myeloid leukemia cell growth by BCR‐ABL antisense oligodeoxynucleotides. Folia Histochemica et Cytobiologica 1991; 29: 85–89
  • Mahon F. X., Belloc F., Reiffers J. Antisense oligomers in chronic myeloid leukemia. Lancet 1993; 341: 566
  • Bishop M. R., Joshi S. S., Jackson J. D., Wu A. G., Sanger W. G., Iversen P. L., Bayever E., Sharp J. G., Zon G., Kessinger A. Purging of peripheral blood progenitor cells with antisense oligonucleotide directed against BCR‐ABL for chronic myelogenous leukemia. Blood 1994; 84(Suppl. 1)740a, abstr. 2946
  • Smetsers F. C. M., Skorski T., van de Locht L. T. F., Wessels H. M. C., Pennings A. H. M., Witte T., Calabretta B., Mensink E. J. B. M. Antisense BCR‐ABL oligonucleotides induce apoptosis in the Philadelphia chromosome‐positive cell line BV173. Leukemia 1994; 8: 129–140
  • O'Brien S. G., Kirkland M. A., Melo I. V., Rao M. H., Davidson R. J., McDonald C., Goldman J. M. Antisense BCR‐ABL oligomers cause non‐specific inhibition of chronic myeloid leukemia cell lines. Leukemia 1994; 8: 2156–2162
  • Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature 1994; 372: 333–335
  • Finlay C. A., Hinds P. W., Levine A. J. The p53 proto‐oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–1093
  • Eliyahu D., Michlovitz D., Eliyahu S., Pinhasi‐Kimhi O., Oren M. Wild‐type p53 can inhibit oncogene‐mediated focus formation. Proc. Natl. Acad. Sci. USA 1989; 86: 8763–8767
  • Diller L., Kassel J., Nelson C. E., Gryka M. A., Litwak G., Gebhardt M., Bressac B., Ozturk M., Baker S. J., Vogelstein B., Friend S. H. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Bid. 1990; 10: 5772–5781
  • Chen P. L., Chen Y., Bookstein R., Lee W. H. Genetic mechanisms of tumor suppression by the human p53 gene. Science 1990; 250: 1576–1580
  • Bi S., Lanza F., Goldman I. M. The involvement of “tumor suppressor” p53 in normal and chronic myelogenous leukemia hemopoiesis. Cancer Res. 1994; 54: 582–586
  • Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science 1991; 253: 49–53
  • Nigro J. M., Baker S. J., Preisinger A. C., Jessup J. M., Hostetter R., Clearly K., Bingner S. H., Davison N., Baylin S., Devilee P., Glover T., Collins F. S., Weston A., Modali R., Harris C. C., Vogelstein B. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705–708
  • Gaidano G., Ballerini P., Gong J. Z., Inghirami G., Neri A., Newcomb E. W., Magrath I. T., Knowles D. M., Dalla-Farera R. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 1991; 88: 5413–5417
  • Parada L., Land H., Weinberg R., Wolf D., Rotter W. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984; 312: 649–651
  • Ahuja H., Bar‐Eli M., Advani S. H., Benchimol S., Cline M. J. Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc. Natl. Acad. Sci. USA 1989; 86: 6783–6787
  • Mashal R., Shtalrid M., Talpaz M., Kantarjian H., Smith L., Beran M., Cork A., Trujillo J., Gutterman J., Deisseroth A. Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myelogenous leukemia. Blood 1990; 75: 180–189
  • Sugimoto K., Toyoshima H., Sakai R., Miyagawa K., Hagiwara K., Hirai H., Ishikawa F., Takaku F. Mutations of the p53 gene in lymphoid leukemia. Blood 1991; 77: 1153–1156
  • Slingerland J. M., Minden M. D., Benchimol S. Mutation of the p53 gene in human acute myelogenous leukemia. Blood 1991; 77: 1500–1507
  • Bishop M. R., Bayever E., Iversen P. L., Sharp G., Spinolo J., Zon G., Smith L. J., Ameson M., Ruddon R., Armitage J., Kessinger A. Phase I trial of systemic administration of OL(1)p53 oligonucleotide in refractory acute myelogenous leukemia and advanced myelodysplastic syndrome. Blood 1993; 82(Suppl. 1)443a, abstr. 1757
  • Coco F. L., Gaidano G., Louie D. C., Offit K., Chaganti R. S. K., Dalla-Favera. p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 1993; 82: 2289–2295
  • Bayever E., Haines K. M., Iversen P. L. Selective cytotoxicity to human leukemic myeloblasts produced by oligodeoxyribonucleotide phosphorothioates complementary to p53 nucleotide sequences. Leuk. Lymph. 1994; 12: 223–231
  • Bayever E., Iversen P. Oligonucleotides in the treatment of leukemia. Hematol. Oncol. 1994; 12: 9–14
  • Spinolo J., Iversen P., Smith L., Pirucello S. J., Haines K. M., Norton S. E., Kay H. D., Ameson M. S., Cook P., Zon G., Bayever E. Antisense p53 oligodeoxynucleotide for systemic antileukaemic therapy. Hum. Gene Ther. 1992; 3: 24A
  • Barton C. M., Lemoine N. R. Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression. Br. J. Cancer 1995; 71: 429–437
  • Mukhopadhyay T., Roth J. A codon 248 p53 mutation retains tumor suppressor function as shown by enhancement of tumor growth by antisense p53. Cancer Res. 1993; 53: 4362–4366
  • Anfossi G., Gewirtz A. M., Calabretta B. An oligomer complementary of c‐myb‐encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc. Natl. Acad. Sci. USA 1989; 82: 3379–3383
  • Gewirtz A. M., Calabretta B. A c‐myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 1988; 242: 1303–1306
  • Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c‐myb antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 1992; 89: 11823–11827
  • Rabbitts T. H. Chromosomal translocations in human cancer. Nature 1994; 372: 143–149
  • Sentman C. L., Shutter J. R., Hockenberry D., Kanagawa O., Korsmeyer S. J. Bc12 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879–888
  • Strasser A., Harris A. W., Cory S. Bc12 transgene inhibits T‐cell death and perturbs thymic self‐censorship. Cell 1991; 67: 889–899
  • Reed J. C., Cuddy M., Haldar S., Croce C., Nowell P., Makover D., Bradley K. BCL‐2‐mediated tumongenicity of a human T‐lymphoid cell line: synergy with c‐myc and inhibition by BCL‐2 antisense. Proc. Natl. Acad. Sci. USA 1990; 87: 3660–3664
  • Reed J. C., Stein C., Subasinghe C., Haldar S., Croce C., Yum S., Cohen J. Antisense‐mediated inhibition of BCL‐2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phospho‐rothioate oligodeoxynucleotides. Cancer Res. 1990; 50: 6565–6570
  • Pocock C., Al‐Mahdi N., Hall P., Morgan G., Cotter F. In vivo suppression of B‐cell lymphoma with BCL‐2 antisense oligonucleotides. Blood 1993; 82(Suppl. 1)200a, abstr. 784
  • McManaway M. E., Neckers L. M., Loke S. L., Al‐Nasser A. A., Redner R. L., Shiramizu B. T., Goldschmidts W. L., Huber B. E., Bhatia K., Magrath I. T. Tumor‐specific inhibition of lymphoma growth by an antisense oligodeoxynucleotide. Lancet 1990; 335: 808–811
  • Azuma E., Hiratake S., Nishiguchi Y., Tanaka S., Sakurai M. Successful abrogation of P‐glycoprotein expression of a murine multidrug‐resistant leukemia cell line with anti‐sense MDR oligomer. Blood 1993; 82(Suppl. 1)257a, abstr. 1014
  • Schlaifer D., Meyer K., Muller C., Attal M., Smith M. T., Tamaki S., Weimels J., Pris J., Jaffrézou J. P., Laurent G., Myers C. E. Antisense inhibition of myeloperoxidase increases the sensitivity of the HL‐60 cell line to vincristine. Leukemia 1994; 8: 289–291

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.