324
Views
32
CrossRef citations to date
0
Altmetric
Original Article

CD11c Integrin Gene Promoter Activity During Myeloid Differentiation

&
Pages 415-425 | Received 26 Jun 1996, Published online: 01 Jul 2009

References

  • Hynes R. O. Integrins: versatility, modulation and signalling in cell adhesion. Cell 1992; 69: 11–25
  • van der Vieren M., Trong H. L., Wood C. L., Moore P. F., Staunton D. E., St John T., Gallatin W. M. A novel leukointegrin, αdβ2, binds preferentially to ICAM‐3. Immunity 1995; 3: 683–690
  • Bilsland C. A., Diamond M. S., Springer T. A. The leukocyte integrin p150, 95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous beta subunit and localization of a ligand recognition site to the I domain. J. Immunol. 1994; 152: 4582–4589
  • Loike J. D., Sodeik B., Cao L., Leucona S., Wettz J. I., Detmers P. A., Silverstein S. C. CD11c/CD18 on neutrophils recognizes a domain at the Nterminus of the A alpha chain of fibrinogen. Proc. Natl. Acad. Sci. USA 1991; 88: 1044–1048
  • Postigo A. A., Corbi A. L., Sanchez‐Madrid F., De Landazuri M. O. Regulated expression and function of CD11c/CD18 integrin on human B lymphocytes. Relation between attachment to fibrinogen and triggering of proliferation through CD11c/CD18. J. Exp. Med. 1991; 174: 1313–1322
  • Diamond M. S., Alon R., Parkos C. A., Quinn M. T., Springer T. A. Heparin is an adhesive ligand for the leukocyte integrin Mac‐1 (CD11b/CD18). J. Cell. Biol. 1995; 130: 1473–1482
  • Ingalls R. R., Golenbock D. T. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J. Exp. Med. 1995; 181: 1473–1479
  • Keizer G. D., te Velde A. A., Schwarting R., Figdor C. G., de Vries J. Role of p150, 95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes. Eur. J. Immunol. 1987; 17: 1317–1322
  • Keizer G. D., Borst J., Visser W., Schwarting R., de Vries J., Figdor C. G. Membrane glycoprotein p150, 95 of human cytotoxic T cell clones is involved in conjugate formation with target cells. J. Immunol. 1987; 138: 3130–3136
  • Stacker S. A., Springer T. A. Leukocyte integrin p150, 95 (CD11c/CD18) functions as an adhesion molecule binding to a counter‐receptor on stimulated endothelium. J. Immunol. 1991; 146: 648–655
  • Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor‐related protein (LRP). Annu. Rev. Biochem. 1994; 63: 601–637
  • Davis G. E. The Mac‐1 and p150.95 beta 2 integrins bind denatured proteins to mediate leukocyte cell‐substrate adhesion. Exp. Cell. Res. 1992; 200: 242–252
  • Anderson D. C., Miller L. J., Schmalstieg F. C., Rothlein R., Springer T. A. Contributions of the Mac‐1 glycoprotein family to adherence‐dependent granulocyte functions: structure‐function assessments employing subunit‐specific monoclonal antibodies. J. Immunol. 1986; 137: 15–27
  • Nueda A., López‐Rodríguez C., Rubio M., Sotillos M., Postigo A., del Pozo M. A., Vega M., Corbí A. L. Hematopoietic cell type‐dependent regulation of leukocyte integrins functional activity. CD11b and CD11c expression inhibit LFA‐1‐dependent aggregation of differentiated U937 cells. Cell. Immunol. 1995; 164: 163–169
  • Hogg N., Takacs L., Palmer D. G., Selvendran Y., Allen C. The p150, 95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur. J. Immunol. 1986; 16: 240–248
  • Chadburn A., Inghirami G., Knowles D. M. Hairy cell leukemia‐associated antigen LeuM5 (CD11c) is preferentially expressed by benign activated and neoplastic CD8 T cells. Am. J. Pathol. 1990; 136: 29–37
  • Huleatt J. W., Lefrancois L. Antigen‐driven induction of CDllc on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo. J. Immunol. 1995; 154: 5684–5693
  • McFarland H. I., Nahill S. R., Maciaszek J. W., Welsh R. M. CD11b (Mac‐1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection. J. Immunol. 1992; 149: 1326–1333
  • Hanson C. A., Gribbin T. E., Schnitzer B., Schlegelmilch J. A., Mitchell B. S., Stoolman L. M. CD11c (Leu‐M5) expression characterizes a B‐cell chronic lymphoproliferative disorder with features of both chronic lymphocytic leukemia and hairy cell leukemia. Blood 1990; 76: 2360–2367
  • Schwarting R., Stein H., Wang C. Y. The monoclonal antibodies ami S‐HCL 1 (anti Leu 14) and anti S‐HCL 3 (anti Leu M5) allow the diagnosis of hairy cell leukemia. Blood 1985; 65: 974–983
  • Macon W. R., Williams M. E., Greer J. P., Hammer R. D., Glick A. D., Collins R. D., Cousar J. B. Natural killer T‐cell lymphomas: aggressive lymphomas of T‐large granular lymphocytes. Blood 1996; 87: 1474–1483
  • Bellón T., López‐Rodríguez C., Vara A., Jochems G., Bernabeu C., Corbí A. L. Transcriptionally regulated expression of the p150, 95 and VLA‐4 integrins during myeloid cell differentiation. Eur. J. Immunol. 1994; 24: 41–47
  • Noti J. D., Reinemann B. C. The leukocyte integrin gene CD11c is transcriptionaily regulated during monocyte differentiation. Mol. Immunol. 1995; 32: 361–369
  • Kansas G. S., Muirhead M. J., Dailey M. O. Expression of the CD11/CD18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal myeloid and eryhroid differentiation in humans. Blood 1990; 76: 2483–2492
  • Miller L. J., Schwarting R., Springer T. A. Regulated expression of the Mac‐1, LFA‐1, p 150, 95 glycoprotein family during leukocyte differentiation. J. Immunol. 1987; 137: 2891–2900
  • Dudley D., Baker D. M., Hickey M. J., Hickstein D. D. Expression of surface antigen and mRNA for the CD11c (αX, p150) subunit of the human leukocyte adherence receptor family in hematopoietic cells. Biochem. Biophys. Res. Commun. 1989; 160: 346–353
  • Cheng T., Erikcson‐Miller C. L., Li C., Cardier J., Wang Y., Dempsey J., Mogle M., Barbera E., Murphy M. J., Jr, Dai W. HIMeg‐1, a cell line derived from a CML patient, is capable of monocytic and megakaryocytic differentiation. Leukemia 1995; 9: 1257–1263
  • Öberg F., Botling J., Nilsson K. Functional antagonism between vitamin D3 and retinoic acid in the regulation of CD 14 and CD23 expression during monocytic differentiation of U‐937 cells. J. Immunol. 1993; 150: 3487–3495
  • Ehinger M., Bergh G., Olofsson T., Baldertorp B., Olsson Y., Gullberg U. Expression of the p53 tumor suppressor gene induces differentiation and promotes induction of differentiation by 1, 25‐dihydroxycholecalciferol in leukemic U‐937 cells. Blood 1996; 87: 1064–1074
  • Testa U., Masciulli R., Tritarelli E., Pustorino R., Mariani G., Martucci R., Barberi T., Camagna A., Valtieri M., Peschle C. Transforming growth factor‐β potentiates vitamin D3‐induced terminal monocytic differentiation of human leukemic cell lines. J. Immunol. 1993; 150: 2418–2430
  • Hewison M., Dabrowski M., Faulkner L., Hughson E., Vadher S., Rut A., Brickell P. M., O'Riordan J. L. H., Katz D. R. Transfection of vitamin D3 receptor cDNA into the monoblastoid cell line U937. J. Immunol. 1994; 153: 5709–5719
  • Lübbert M., Herrmann F., Koeffler H. P. Expression and regulation of myeloid‐specific genes in normal and leukemic myeloid cells. Blood 1991; 77: 909–924
  • Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U‐937). Int. J. Cancer 1976; 17: 565–577
  • Larsson L. G., Ivhed I., Gidlund M., Patterson U., Vennström B., Nilsson K. Phorbol ester‐induced terminal differentiation is inhibited in human U‐937 monoblastic cells expressing a v‐myc oncogene. Proc. Natl. Acad. Sci. USA 1988; 85: 2638–2642
  • Holt J. T., Redner R. L., Nienhuis A. W. An oligomer complementary to c‐myc mRNA inhibits proliferation of HL‐60 promyelocytic cells and induces differentiation. Mol. Cell. Biol 1988; 8: 963–973
  • Prieto J., Eklund A., Patarroyo M. Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cell. Immunol 1994; 156: 191–211
  • Huh H. Y., Pearce S. F., Yesner L. M., Schindler J. L., Silverstein R. L. Regulated expression of CD36 during monocyte‐to‐macrophage differentiation: potential role of CD36 in foam cell formation. Blood 1996; 87: 2020–2028
  • Corbí A. L., Garcia‐Aguilar J., Springer T. A. Genomic structure of an integrin alpha subunit, the leukocyte p150, 95 molecule. J. Biol. Chem. 1990; 265: 2782–2788
  • López‐Cabrera M., Nueda A., Vara A., Garcia‐Aguilar J., Tugores A., Corbi A. L. Characterization of the p150, 95 leukocyte integrin alpha subunit (CD11c) gene promoter. Identification of cis‐acting elements. J. Biol. Chem. 1993; 268: 1187–1193
  • Noti J. D., Reinemann B. C., Petrus M. N. Regulation of the leukocyte integrin gene CD11c is mediated by API and Ets transcription factors. Mol. Immunol 1996; 33: 115–127
  • López‐Rodríguez C., Chen H., Tenen D. G., Corbí A. L. Identification of Spl‐binding sites in the CD11c (p150, 95α) and CD11a (LFA‐1α) integrin subunit promoters and their involvement in the tissue‐specific expression of CD11c. Eur. J. Immunol 1995; 25: 3496–3503
  • López‐Rodríguez C., Kluin‐Nelemans H. C., Corbí A. L. The AP‐1 transcription factor regulates the basal and differentiation‐inducible transcription of the CD11c integrin gene. J. Immunol 1996; 156: 3780–3787
  • Smale S. T., Baltimore D. The “initiator” as a transcription control element. Cell 1989; 57: 103–113
  • Chen H. M., Pahl H. L., Scheibe R. J., Zhang D. E., Tenen D. G. The Spl transcription factor binds the CD11b promoter specifically in myeloid cells in vivo and is essential for myeloid‐specific promoter activity. J. Biol. Chem. 1993; 268: 8230–8239
  • Zhang D. ‐E., Hetherington C. J., Tan S., Dziennis S. E., Gonzalez D. A., Chen H. M., Tenen D. G. Spl is a critical factor for the monocyte specific expression of human CD14. J. Biol. Chem. 1994; 269: 11425–11434
  • Jane S. M., Gumucio D. L., Ney P. A., Cunningham J. M., Nienhuis A. W. Methylation‐enhanced binding of Sp1 to the stage selector element of the human γ‐globin gene promoter may regulate development specificity of expression. Mol. Cell. Biol. 1993; 13: 3272–3281
  • Spanopoulou E., Giguere V., Grosveld F. The functional domains of the murine Thy‐1 gene promoter. Mol. Cell. Biol 1991; 11: 2216–2228
  • Jackson S. P., Tjian R. O‐Glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell 1988; 55: 125–133
  • Bessereau J., Mendelzon D., LePoupon C., Fiszman M., Changeux J., Piette J. Muscle‐specific expression of the acetylcholine receptor a‐subunit gene requires both positive and negative interactions between myogenic factors, Sp1 and GBF factors. EMBO J. 1993; 12: 443–449
  • Chen J. L., Attardi L. D., Verrijzer C. P., Yokomori K., Tjian R. Assembly of recombinant TFIID reveales differential coactivator requirements for dictinct transcriptional activators. Cell 1994; 79: 93–105
  • Chiang C. ‐M., Roeder R. G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 1995; 267: 531–536
  • Udvadia A. J., Templeton D. J., Horowitz J. M. Functional interactions between the retinoblastoma (Rb) protein and Sp‐family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc. Natl Acad. Sci. USA 1995; 92: 3953–3957
  • Chen L. I., Nishinaka T., Kwan K., Kitabayashi Y., Yokoyama K., Fu Y. ‐H. F., Griinwald S., Chiu R. The retinoblastoma gene product RB stimulates Spl‐mediated transcription by liberating Spl from a negatuive regulator. Mol, Cell. Biol 1994; 14: 4380–4389
  • Udvadia A. J., Rogers K. T., Higgins P. D. R., Murata Y., Martin K. H., Humphrey P. A., Horowitz J. M. Sp‐1 binds promoter elements regulated by the RB protein and Sp‐1‐mediated transcription is stimulated by RB coexpression. Proc. Natl. Acad. Sci. USA 1993; 90: 3265–3269
  • Wang J. Y. J., Knudsen E. S., Welch P. J. The retinoblastoma tumor suppressor protein. Adv. Cancer Res. 1994; 64: 25–85
  • Liu M., Lee M. ‐H., Cohen M., Bommakanti M., Freedman L. P. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dew. 1996; 10: 142–153
  • Harper J. W., Elledge S. J. Cdk inhibitors in development and cancer. Curr. Opin. Genetics Dev. 1996; 6: 56–64
  • Zhang D. ‐E., Hetherington C. J., Gonzalez D. A., Chen H. ‐M., Tenen D. G. Regulation of CD14 expression during monocytic differentiation induced with 1α, 25‐dihy‐droxyvitamin D3. J. Immunol. 1994; 153: 3276–3284
  • Rubio M. A., López‐Rodríguez C., Nueda A., Aller P., Armesilla A. L., Vega M. A., Corbí A. L. Granulocyte/macrophage colony‐stimulating factor, phorbol ester, and sodium butyrate induce the CD11c integrin gene promoter activity during myeloid differentiation. Blood 1995; 86: 3715–3724
  • Colotta F., Wang J. M., Polentarutti N., Mantovani A. Expression of c‐fos protooncogene in normal human peripheral blood granulocytes. J. Exp. Med. 1987; 165: 1224–1229
  • Sariban E., Mitchell T., Rambaldi A., Kufe D. W. c‐sis but not c‐Fos gene expression is lineage‐specific in human myeloid cells. Blood 1988; 71: 488–493
  • Mavilio F., Testa U., Sposi N. M., Petrini M., Pelosi E., Bordignon C., Amadori C., Mandeli F., Peschle C. Selective expression of c‐fos protooncogene in human acute myelomonocytic and monocytic leukemias: a molecular marker of terminal differentiation. Blood 1987; 69: 160–164
  • Pinto A., Colletta G., del Vecchio L., Rosati R., Attadia V., Cimino R., Colombatti A. c‐fos oncogene expression in human hematopoietic malignancies is restricted to acute leukemias with monocytic phenotype and to subsets of B cell leukemias. Blood 1987; 70: 1450–1457
  • Angel P., Karin M. The role of Jun, Fos, and the AP‐I complex in cell proliferation and transformation. Biochim. Biophys. Acta. 1991; 1072: 129–157
  • Pahl H. L., Burn T. C., Tenen D. G. Optimization of transient transfection into human myeloid cell lines using a luciferase reporter gene. Exp. Hematol. 1991; 19: 1038–1041
  • Sato N., Sakamaki K., Terada N., Arai K. ‐I., Miyajima A. Signal transduction by the high‐affinity GM‐CSF receptor: two distinct cytoplasmic regions of the common β subunit responsible for different signaling. EMBO J. 1993; 12: 4181–4189
  • Roskelley C. D., Srebrow A., Bissell M. J. A hierarchy of ECM‐mediated signalling regulates tissue‐specific gene expression. Curr. Opin. Cell. Biol. 1995; 7: 736–747

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.