86
Views
26
CrossRef citations to date
0
Altmetric
Original Article

p53 Mutations, Methylation and Genomic Instability in the Progression of Chronic Myeloid Leukaemia

&
Pages 211-226 | Received 20 Oct 1996, Published online: 01 Jul 2009

References

  • Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767
  • Brown W. M. C., Doll R. Mortality from cancer and other causes after radiotherapy for alkylosing spondylitis. British Medical Journal 1965; 2: 1327–1332
  • Marshall C.J., Rigby P. W. J. Viral and cellular genes involved in oncogenesis. Cancer Surveys 1984; 3: 183–214
  • Farrow A., Jacobs A., West R.R. Myelodysplasia, chemical exposure and other environmental factors. Leukemia 1989; 3: 33–35
  • Yuasa Y., Srivastava S.K., Dunn C.Y., Rhim J.S., Reddy E.P., Aaronson S.A. Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 1983; 303: 775–779
  • Dalla-Favera R., Bregni M., Erikson J., Patterson D., Gallo R.C., Croce C.M. Human c-myc one gene is located on the region of chroinosoine 8 that is translocated in Burkitt lymphoma cells. Proceedings of the National Academy of Science USA 1982; 79: 7824–7827
  • Sap J., Munoz A., Schmitt J., Stinneneberg H., Vennstrorn H. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 1989; 340: 242–244
  • Lane D.P., Crawford L.V. T-antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278: 261–263
  • DeCaprio J.A., Ludlow J.W., Figge J., Shew J.Y., Huang C.M., Lee W.H., Marsilio E., Paucha E., Livingston D.M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54: 275–283
  • Nigro J.M., Baker S.J., Preisinger A.C., Jessup J.M., Hostetter R., Cleary K., Bigner S.H., Davidson N., Baylin S., Devilee P., Glover T., Collins F.S., Weston A., Modali R., Harris C., Vogelstein B. Mutations in the p53 gene occur in diverse tumour types. Nature 1989; 342: 705–708
  • Linzer D. I. H., Levine A.J. Characterization of a 54K dalton cellular SV40 tumour antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Call 1979; 17: 43–52
  • DeLeo A.B., Jay G., Appella E., Dubois G.C., Law L.W., Old L.J. Detection of transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proceedings of the National Academy of Science USA 1979; 76: 2420–2424
  • Eceles D., Cranston G., Steel C.M., Nakamura Y., Leonard R. Allele losses on chromosome 17 in human epithelial ovarian cancer. Oncogene 1990; 5: 1599–1601
  • Mackay J., Steel C.M., Elder P.A., Forrest A.P., Evan H.J. Allele loss on the short arm of chromosome 17 in breaht cancers. Lancet 1988; 2: 1384–1385
  • Vogelstein B., Fearon E.R., Kern S.E., Hamilton S.R., Preisinger A.C., Nakamura Y., White R. Allelotype or colorectal carcinomas. Science 1989; 244: 207–211
  • Isobe M., Emmanuel B.S., Givol D., Oren M., Croce C.M. Localisation of gene for human p53 tumour antigen to bank 17p13. Nature 1986; 320: 84–85
  • Sousai T., de Fromentel C.C., Mechali M., May P., Kress M. Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene 1987; 1: 71–78
  • Krawezak M., Smith-Sorensen B., Schmidtke J., Kakkar W., Cooper D.N., Hovig E. Somatic spectrum of cancer-associated single basepeir substitutions in the TP53 gene is determined mainly by endogenous mechanisms of mutation and by selection. Human Mutation 1995; 5: 48–57
  • Wada H., Asada M., Nakazawa S., Itoh H., Kobayashi Y., Inoue T., Fukumuro K., Chan L.C., Sugita K., Hanada R., Akula N., Kohayahi N., Mizutani S. Clonal expansion of p53 mutant cells in leukemia progression in vitro. Leukemia 1994; 8: 53–59
  • Nakai H., Misawa S., Taniwaki M., Horiike S., Takashima T., Seriu T., Nakagawa H., Fujii H., Shimazaki C., Maruo N., Akaogi T., Uike N., Ahe T., Kashima K. Prognostic significance of loss of a chromosome 17p and p53 gene mutations in blast crisis of chronic myelogenous leukaemia. British Journal of Haematology 1994; 87: 425–427
  • Nakai H., Misawa S., Toguchida J., Yandell D.W., Ishiznki K. Frequent p53 gene mutations in blast crisis ol chronic rnyelogenous leukemia, especially in myeloid crisis harboring loss of chromosome 17p. Cancer Research 1992; 52: 6588–6593
  • Borgstrom G.H., Vuopio P., de la Chapelle A. Abnormalities of chromosome 17 in myeloproliferative disorders. Cancer Genetics & Cytogenetics 1982; 5: 123–135
  • Rodriguez M.A., Ford K.J., Goodacre A., Selvanayagam P., Cabanillas F., Deisseroth A.B. Chromosome 17p and p53 changes in lymphoma. British Journal of Haematology 1991; 79: 575–582
  • Nakai H., Misawa S., Horiike S., Meekawa T., Kashima K., Ishizaki K. Hemizygous expression of the wild-type p53 allele may confer a selective growth advantage before complete inactivation of the p53 gene in the progression of chronic myelogenous leukaemia. British Journal of Haematology 1995; 90: 147–155
  • Knudson A.G. Mutation and cancer: Statistical study of retinoblastoma. Proceedings of the National Academy of Sciences USA 1971; 68: 820–823
  • Lane D.P. p53, guardian of the genome. Nature 1992; 358: 15–16
  • Kastan M.B., Onyekwere O., Sidransky D., Vogelstein B., Craig R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 1991; 51: 6304–6311
  • Clarke A.R., Purdie C.A., Harrison D.J., Morris R.G., Bird C.C., Hooper M.L., Wyllie A.H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 786–787
  • Yin Y., Tainsky M.A., Bischoff F.Z., Strong L.C., Wahl G.M. Wild type p53 restores cell cycle and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948
  • Livingstone L.R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T.D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70: 923–935
  • Hartwell L. Defects in a cell cycle checkpoint may he responsible for the genomic instability of cancer cells. Cell 1992; 71: 543–546
  • Carder P.J., Cripps K.J., Morris R., Collins S., White S., Bird C.C., Wyllie A.H. Mutation of the p53 gene precedes aneuploid clonal divergence in colorectal carcinoma. British Journal of Cancer 1995; 71: 215–218
  • Wada C., Shionoya S., Fujino Y., Tokuhiro T., Akahoshi T., Uchida T., Ohtani H. Genomic instability of rnicrosatellite repeats and its association with the evolution of chronic myelogenous leukemia. British 1994; 83: 3449–3456
  • Fialkow P.J., Jacobson R.J., Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. American Journal of Medicine 1977; 63: 125–130
  • Silver R.T. Chronic myeloid leukemia. A perspective of the clinical and biological issues of the chronic phase. Haematology and Oncology Clinics of North American 1990; 4: 319–323
  • Rowley J.D., Testa J.R. Chromosomal abnormalilies in malignant haematalogic diseases. Advances in Cancer Research 1982; 36: 103–148
  • Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. Journal of the U.S. National Cancer Institute 1960; 25: 85–93
  • Caspersson T., Gahrton G., Lindsten J., Zech L. Identification of the Philadelphia chromosome as a number 22 by quinaerine mustard fluorescence analysis. Experimental Cell Research 1970; 63: 238–240
  • Kowley J.D. Letter: A new consistent chromosome abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293
  • Pendergast A.M., Muller A.J., Havlik M.H., Maru Y., Witte O.N. BCK sequences essential for transformation by the BCK-ABL. oncogene bind to the ABL SH2 regulatory domain in a non-phoshotyrosine-dependent manner. Cell 1991; 66: 161–171
  • Muller A.J., Pendergast A.M., Havlik M.H., Puil L., Pawson T., Witte O.N. A limited set of SH2 domains binds BCK through a high affinity phosphotyrosine-independent interaction. Molucular & Cellular Biology 1992; 12: 5087–5093
  • Pawson T. Non-catalytic domains of cytoplasmic protein-tyrosine kinases: regulatory elements in signal transduction. Oncogene 1988; 3: 491–495
  • Diekmann D., Brill S., Garrett M.D., Totty N., Hsuan J., Monfries C., Hall C., Lim L., Hall A. Bcr encodes GTPase-activating protein for p21Rac. Nature 1991; 351: 400–402
  • Maru Y.M., Witte O.N. The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 1991; 67: 459–468
  • Scott M.L., Van Etten K.A., Daley G.Q., Baltimore D. v-abl causes hemopoietic disease distinct from that caused by bcr-abl. Proceedings of the National Academy of Sciences USA 1991; 88: 6506–6510
  • Pendergast A.M., Muller A.J., Havlik M.H., Clark R., McCormick F., Witte O.N. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proceedings of the National Activity of Sciences USA 1991; 88: 5927–5931
  • Kaye F.J., Najfeld V., Singer J., Cuttner J., Fialkow P.J. Confirming evidence for the clonal development and stem cell origin of Philadelphia chromosome-negative chronic myelogenous leukemia. American Journal of Hematology 1984; 17: 93–96
  • Lisker F., Casas L., Mutchinick O., Perez-Chavez F., Labardini J. Late-appearing Philadelphia chromosome in two patients with chronic myelogenous leukemia. Blood 1980; 56: 812–814
  • Frassoni F., Repetto M., Podesta M., Piaggo G., Raffo M.R., Sessarego M., Bacigalupo A., Marmont A.M. Competitive survival/prolifelation of normal and Ph1 -positive haemopoietic cells. British Journal of Haematology 1986; 63: 135–141
  • Sokal J.E., Gomez G.A., Baccarani M., Tura S., Clarkson B.D., Cervantes F., Rozman C., Carbonell F., Anger B., Heimpel H., Nissen N. 1., Robertson J.E. Prognostic significance of additional cytogenetic abnormalities at diagnosis of Philadelphia chromosome-positive chronic granulocytic leukemia. Blood 1988; 72: 294–298
  • Mitelman F. The cytogenetic scenario of chronic rnyeloid leukaemia. Leukemia and Lymphoma 1993; 11: 11–15
  • Sawyers C.L. The role of myc in transformation by BCR-ABL. Leukemia and Lymphoma 1993; 11: 45–46
  • Mori N., Wada M., Yokota J., Terada M., Okada M., Teramura M., Masuda M., Hoshino S., Motoji T., Oshimi K., Mizuguchi H. Mutations of the p53 tumour suppressor gene in haematological neoplasms. British Journal of Haematology 1992; 81: 235–240
  • Fenaux P., Preudhomme C., Quiquandon I., Jonveux P., Lai J.L., Vanrumbeke M., Loucheux-Lefebvre M.H., Bauters F., Berger K., Kerckaert J.P. Mutations of the p53 gene in acute myeloid leukaemia. British Journal of Haematology 1992; 80: 178–183
  • Jonveux P., Fenaux P., Quiquandon I., Pignon J.M., Lai J.L., Loucheux-Lefebvre M.H., Goossens M., Bauters F., Berger K. Mutations in the p53 gene in myelodys-plastic syndromes. Oncogene 1991; 6: 2243–2247
  • Ahuja H., Bar-Eli M., Advani S.H., Benchimol S., Cline M.J. Alterations in the p. 53 gene and the clonal evolution of the blast crisis in chronic myelocytic leukemia. Proceedings of the National Academy of Sciences USA 1989; 86: 6783–6787
  • Ahuja H., Bar-Eli M., Arlin Z., Advani S., Allen S.L., Goldman J., Snyder D., Foti A., Cline M. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. Journal of Clinical Investigation 1991; 87: 2042–2047
  • Mashal K., Shtalrid M., Talpaz M., Kantarjian H., Smith L., Beran M., Cork A., Trujillo J., Gutterman J., Deisseroth A. Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myelogenous leukemia. Blood 1990; 75: 180–189
  • Foti A., Ahuja H.G., Allen S.L., Koduru P., Schuster M.W., Schulman P., Bar-Eli M., Cline M.J. Correlation between molecular and clinical events in the evolution of chronic myelocytic leukemia in blast crisis. Blood 1991; 77: 2441–2444
  • Guinn B.A., Smith M., Padua K.A., Burnett A.K., Mills K.I. Changing p53 mutations with the evolution of chronic myeloid leukaemia from the chronic phase to blast crisis. Leukemia Research 1995; 19: 519–525
  • Feinstein E., Cimino C., Gale K.P., Alimena G., Berthier K., Kishi K., Goldinan J., Zaccaria A., Berrebi A., Canaani E. p53 in chronic myelogenous leukemia in acute phase. Proceedings of the National Academy of Science, USA 1991; 88: 6293–6297
  • Foti A., Cline M.J. Sequential relapses of blastic crisis may involve different clones of cells with different molecular abnormalities. British Journal of Haematology 1994; 87: 627–630
  • Kurosawa M., Okabe M., Kunieda Y., Miyazaki T. p53 mutation in the chronic phase was not detected in the myeloid crisis of a chronic myelocytic leukemia case. Blood 1994; 83: 2750–2152
  • Laneuville P., Sun G., Timm M., Vekemans M. Clonal evolution in a myeloid cell line transformed to inter-leukin-3 independent growth by retroviral transduction and expression of p210bcr/abl. Blood 1992; 80: 1788–1797
  • Lin S.Y., Kiggs A.D. Lac operator analogues: bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor. Proceedings of the National Academy Sciecce USA 1972; 69: 2574–2576
  • Fischer E.F., Caruthers M.H. Studies on gene control regions XII. The functional significance of a Lac operator constitutive mutation. Nucleic Acids Research 1979; 7: 401–416
  • Smith H.O. Nucleotide sequence specificity of restriction endonucleases. Science 1979; 205: 455–462
  • Pollack Y., Stein K., Razin H., Cedar H. Methylation of foreign DNA sequences in eukaryotic cells. Proceodings of the National Academy Science USA 1980; 77: 6463–6467
  • Vovis G.F., Horiuchi K., Zinder N.D. Kinetics of methylation of DNA by restriction endonuclease from Escherichia coli B. Proceedings of the National Academy Science USA 1974; 71: 3810–3813
  • Bird A.P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. Journal of Molecular Biology 1978; 118: 49–60
  • Bird A.P. CpG-rich islands and the function of DNA methylation. Nature (London) 1986; 321: 209–213
  • Hillyard C.J., Oscier D.G., Foa R., Catovsky D., Coldman J.M. Immunoreactive calcitonin in leukaemia. British Medical Journal 1979; 2: 1392–1393
  • Foa R., Oscier D.G., Hillyard C.J., Incarbone E., MacIntyre I., Goldman J.M. Production of immunoreactive calcitonin by myeloid leukaemia cells. British Journal of Haematology 1982; 50: 215–223
  • Koeppler H., Pfleuger K.H., Knapp W., Havemann K. Establishment of three permanent human leukaemia cell lines producing immunoreactive calcitonin. British Journal of Haematology 1987; 65: 405–409
  • Foa P., Ortolani S., Pogliani E.M., Lurlo A., Gualdoni A., Maiolo A.T., Polli E.E. Immunoreactive calcitonin: a tumor marker for myelogenous leukemias. Internatational Journal of Biological Markers 1990; 5: 27–30
  • Riggs A.D., Jones P.A. S-Methylcytosine, gene regulation and cancer. Advances in Cancer Research 1983; 40: 1–30
  • Feinberg A.P., Vogelstein 9. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89–92
  • Baylin S.B., Hoppener J. W. M., de Bustros A., Steenbergh P.H., Lips C. J. M., Nelkin B.D. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Research 1986; 46: 2917–2922
  • Baylin S.B., Fearon E.R., Vogelstein B., de Bustros A., Sharkis S.J., Burke P.J., Staal S.P., Nelkin B.D. Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 1987; 70: 412–417
  • Malinen T., Palotie A., Pakkala S., Peltonen L., Ruutu T., Jansson S.-E. Acceleration of chronic myeloid leukemia correlates with calcitonin gene hypermethylation. Blood 1991; 77: 2435–2440
  • Mills K.I., Guinn B.A., Walsh V., Burnett A.K. Calcitonin methylation, p53 mutations and disease progression in CML. Leukemia Research 1996; 20: 771–775
  • Ohyashiki J.H., Ohyashiki K., Kawakubo T., Tauchi T., Shimamoto T., Toyama K. The methylation status of the major breakpoint cluster region in human leukemia cells, including Philadelphia chromosome-positive cells, is linked to the lineage of hematopoietic cells. Leukemia 1993; 7: 801–807
  • Litz C.E., Goldfarb A.N., Strickler J.G., Brunning R.D. Presence of lineage-specific hypomethylated sites in the major breakpoint cluster region. Cancer Research 1990; 50: 4984–4990
  • Litz C.E., McClure J.S., Coad J.E., Goldfarb A.N., Brunning R.D. Methylation status of the major breakpoint cluster region in Philadelphia chromosome negative leukemias. Leukemia 1992; 6: 35–31
  • Mills K.I., Sproul A.M., Burnett A.K. Methylation of the major breakpoint cluster region (M-BCR) in Philadelphia-positive CML. Leukemia 1993; 7: 707–711
  • Ohtsuki T., Nishitani K., Hatamochi A., Yawata Y., Namba M. Analysis of methylation in the c-MYC gene in five human myeloma cell lines. British Journal of Haematology 1991; 77: 172–179
  • Hoffman R.M. Unbalanced transmethylation and the perturbation of the differentiated state leading to cancer. Bioessays 1990; 12: 163–166
  • Lewis J., Bird A. DNA methylation and chromatin structure. FEBS Letters 1991; 285: 155–159
  • Smith S.S. DNA methylation in eukaryotic chromosome satability. Molecular Carcinogenesis 1991; 4: 91–92
  • Pogribny I.P., Basnakian A.G., Miller B.J., Lopatina N.G., Poirier L.A., James S.J. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Research 1995; 55: 1894–1901
  • Cariello N.F., Cui L., Beroud C., Soussi T. Database and software for the analysis of mutations in the human p53 gene. Cancer Research 1994; 54: 4454–4460
  • Zion M., Ben-Yehuda D., Avraham A., Cohen O., Wetyler M., Melloul D., Ben-Neriah Y. Progressive de novo DNA methylation at the BCR-ABL locus in the course of chronic myelogenous leukemia. Proceedings of the National Academy of Sciences. USA 1994; 91: 10722–10726
  • Nelkin B.D., Przepiorka D., Burke P.J., Thomas E.D., Baylin S.B. Abnormal methylation of the calcitonin gene marks progression of chronic myelogenous leukemia. Blood 1991; 77: 2431–2434

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.