62
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Role of Interleukin-1β Converting Enzyme (ICE) in Acute Myelogenous Leukemia Cell Proliferation and Programmed Cell Death

&
Pages 379-391 | Received 20 May 1996, Published online: 01 Jul 2009

References

  • Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science 1987; 236: 1229–1237
  • Estrov Z., Kurzrock R., Estey E., Wetzler M., Ferrajoli A., Harris D., Blake M., Gutterman J. U., Talpaz M. Inhibition of acute myelogenous leukemia blast proliferation by IL-1 receptor antagonist and soluble IL-1 receptors. Blood 1992; 79: 1938–1945
  • Hoang T., Hamman A., Goncalves O., Letendre F., Mathieu M., Wong G. G., Clark C. S. Interleukin-1 enhances growth factor-dependent proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hematopoietic precursors. J. Exp. Med. 1988; 168: 463–474
  • Zucali J. R., Broxmeyer H. E., Dinarello C. A., Gross M. A., Weiner R. S. Regulation of early human hematopoietic (BFU-E and CFU-GEMM) progenitor cells in vitro by interleukin-1 induced fibroblast medium. Blood 1987; 69: 3–37
  • Carter A., Silvian-Draxler I., Tatarsky I. Effect in interleukin-1, tumor necrosis factor-α, and interferon-alpha on the blast cells of acute myeloblastic leukemia. Am. J. Hematol. 1992; 40: 245–251
  • Oster W., Cicco N. A., Klein H., Hirano T., Kishimoto T., Lindmann A., Mertelsmann R. H., Herman F. Participation of the cytokines interleukin-6, tumor necrosis factor-alpha, and interleukin-1-beta secreted by acute myelogenous leukemia blasts in autocrine and paracrine leukemia growth control. J. Clin. Invest. 1989; 84: 454–457
  • Bagby G. C., Dinarello C. A., Wallace P., Wagner C., Hefeneider S., McCall E. Interleukin-1 stimulates GM-CSF release by vascular endothelial cells. J. Clin. Invest. 1986; 78: 1316–1323
  • Herrmann F., Oster W., Meuer S. C., Lindemann A., Mertelsmann R. H. Interleukin-1 stimulates T lymphocytes to produce granulocyte-monocyte colony-stimulating factor. J. Clin. Invest. 1988; 81: 1415–1418
  • Zucali J. R., Dinarello C. A., Oblon D. J., Gross M. A., Anderson L., Weiner R. S. Interleukin-1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E. J. Clin. Invest. 1986; 77: 857–1863
  • Griffin J. D., Rambaldi A., Vellenga E., Young D., Ostapovicz D., Cannistra S. A. Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony-stimulating factors. Blood 1987; 70: 1218–1221
  • Rennick D. G., Yang L., Gemmell L., Lee F. Control of hemopoiesis by a bone marrow stromal cell clone. Lipopolysaccharide and interleukin-1 inducible production of colony-stimulating factors. Blood 1987; 69: 682–691
  • Bartelmez S. H., Bardley T. R., Bertoncello I., Mochizuki D. Y., Tushinski R. J., Stanley E. R., Hapel A. J., Young I. G., Kriegler A. B., Hodgson G. S. Interleukin-1 plus interleukin-3 plus colony-stimulating factor-1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp. Hematol. 1987; 17: 240–254
  • Stanley E. R., Bartocci A., Partinkin D., Rosendaal M., Bradley T. R. Regulation of very primitive, multipotent, hemopoietic cells by hemopoietin-1. Cell 1986; 45: 667–674
  • Zsebo K. M., Wypych J., Yuschenkoff V. N., Lu H., Hunt P., Dukes P. P., Langley K. E. Effects of hematopoietin-1 and interleukin-1 activities on early hematopoietic cells of the bone marrow. Blood 1988; 71: 962–968
  • Dinarello C. A. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1652
  • di Giovine F. S., Duff G. W. Interleukin-1: The first interleukin. Immunol. Today 1990; 11: 13–20
  • Sachs L., Lotem J. Control of programmed cell death in normal and leukemic cells: New implications for therapy. Blood 1993; 82: 15–21
  • Raza A., Preisler H. D., Li Y. Q., Larson R. A., Goldberg J., Browman G., Bennet J., Grunwald H., Vogler R., Kukla C. Biological characteristics of newly diagnosed poor prognosis acute myelogenous leukemia. Am. J. Hematol. 1993; 42: 359–366
  • Estrov Z., Kurzrock R., Talpaz M. Cytokines and their antagonists in myeloid disorders. Semin. Hematol. 1995; 32: 220–231
  • Estrov Z., Kurzrock R., Talpaz M. Role of interleukin-1 inhibitory molecules in therapy of acute and chronic myelogenous leukemia. Leuk. Lymphoma 1993; 10: 407–418
  • Arend W. P. Interleukin-1 receptor antagonist. Adv. Immunol. 1993; 54: 167–227
  • Dower S. K., Wignall J. M., Schooley K., McMahan C. J., Jackson J. L., Prickett K. S., Lupton S., Cosman D., Sims J. E. Retention of ligand binding activity by the extracellular domain of the IL-1 receptor. J. Immunol. 1989; 142: 4314–4320
  • Zheng H., Fletcher D., Kozak W., Jiang M., Hoffman K. J., Conn C. A., Soszynski D., Grabiec C., Trumbauer M. E., Shaw A., Kostura M. J., Stevens K., Rosen H., North R. J., Chen H. Y., Tocci M. J., Kluger M. J., Van der Ploeg L. H. T. Resistance to fever induction and impaired acute-phase reaction in interleukin-1 beta-deficient mice. Immunity 1995; 3: 9–19
  • Mosley B., Urdal D. L., Prickett K. S., Larsen A., Cosman D., Conlon P. J., Gillis S., Dower S. K. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J. Biol. Chem. 1987; 262: 2941–2944
  • Lonnemann G., Endres S., Van der Meer J. W. M., Cannon J. G., Ghorbani R., Dempsey R. A., Sisson S. D., Wolff S. M., Dinarello C. A. In vitro production of IL 1β IL 1α, TNF and IL2 in healthy subjects: distribution, effect of cyclooxygenase inhibition and evidence of independent gene regulation. Eur. J. Immunol. 1989; 19: 2327–2333
  • Limjuco G., Galuska S., Chin J., Cameron P., Boger J., Schmidt F. A. Antibodies of predetermined specificity to the major charged species of human interleukin 1. Proc. Natl. Acad. Sci. USA 1986; 83: 3972–3976
  • Beuscher H. U., Nickells M. W., Colter H. R. The precursor of interleukin-1 alpha is phosphorylated at residue serine 90. J. Biol. Chem. 1988; 263: 4023–4028
  • Kobayashi Y., Appella E., Yamada M., Copeland T. D., Oppenheim J. J., Matsushima K. Phosphorylation of intracellular precursors of human IL-1. J. Immunol. 1988; 140: 2279–2287
  • Schmidt J. A., Tocci M. J. The Handbook of Experimental Pharmacology I. Peptide Growth Factors and Their Receptors, M Sporn, A Roberts. Springer Verlag, BerlinGermany 1990; 473–521
  • Kobayashi Y., Yamamoto Y. K., Saido T., Kawasaki H., Oppenheim J. J., Matsushima K. Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha. Proc. Natl. Acd. Sci. USA 1990; 87: 5548–5552
  • Camron P. M., Limjuco G. A., Chin J., Silverstein L., Schmidt J. A. Purification to homogeneity and amino acid sequence analysis of two anionic species of human interleukin 1. J. Exp. Med. 1986; 164: 237–250
  • Kostura M. J., Tocci M. J., Limjuxo G., Chin J., Comeron P., Hillman A. G., Chartrain N. A., Schmidt J. A. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc. Natl. Acad. Sci. USA 1989; 86: 5227–5231
  • Howard A. D., Kostura M. J., Thornberry N., Ding G. J. F., Limjuco G., Weidner J., Salley J. P., Hogouist K. A., Chaplin D. D., Mumford R. A., Schmidt J. A., Tocci M. J. IL-1 converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and dose not cleave 31-kDa IL-1 alpha. J. Immunol. 1991; 147: 2964–2969
  • Black R. A., Kronheim S. R., Cantrell M., Defley M. C., March C. J., Pickett K. S., Wignall J., Conlon P. J., Cosman D., Hopp T. P., Mochizuki D. Y. Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 1988; 263: 9437–9442
  • Black R. A., Kronheim S. R., Sleath P. R. Activation of interleukin-1 beta by a co-induced protease. FEBS Lett. 1989; 247: 386–390
  • Sleath P. R., Hendrickson R. C., Kronheim S. R., March C. J., Black R. A. Substrate specificity of the protease that processes human interleukin-1 beta. J. Biol. Chem. 1990; 265: 14526–14528
  • Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J., Elliston K. O., Ayala J. M., Casano R. J., Chin J., Ding G. J. F., Egger L. A., Gaffney D. P., Limjuco G., Palyha O. C., Raju S. M., Rolando A. M., Salley J. P., Yamin T. T., Lee T. D., Shively J. E., MacCoss M., Mumford R. A., Schmidt J. A., Tocci M. J. A novel heterodimeric cysteine protease is required for interleukin-1 β processing in monocytes. Nature 1992; 356: 768–774
  • Cerreti D. P., Koslosky C. J., Mosley B., Nelson N., Van Ness K., Greenstreet T. A., March C. J., Kronheim S. R., Druck T., Cannizzarro L. A., Huebner K., Black R. A. Molecular cloning of the interleukin-1 β converting enzyme. Science 1992; 256: 97–100
  • Singer I. I., Scott S., Chin J., Bayne E. K., Limjuco G., Weidner J., Miller D. K., Chapman K., Kostura M. J. The interleukin-1 β-converting enzyme (ICE) is localized on the external cell surface membranes and in the cytoplasmic ground substance of human monocytes by immuno-electron microscopy. J. Exp. Med. 1995; 182: 1447–1459
  • Walker N. P. C., Talanian R. V., Brady K. D., Dang L. C., Bump N. J., Ferenz C. R., Franklin S., Ghayur T., Hackett M. C., Hammill L. C., Herzog L., Hugunin M., Houy W., Markovich J. A., McGuiness L., Orlewicz E., Paskind M., Pratt C. A., Reis P., Summani A., Terranova M., Welch J. P., Xiong L., Moller A., Tracey D. E., Kamen R., Wong W. W. Crystal structure of the cysteine protease interleukin-1β converting enzyme: A (p20/p10)2 homodimer. Cell 1994; 78: 343–352
  • Wilson K. P., Black J. F., Thomson J. A., Kim E. E., Griffith J. P., Navia M. A., Murcko M. A., Chambers S. P., Aldape R. A., Raybuck S. A., Livingston D. J. Structure and mechanism of interleukin-1β converting enzyme. Nature 1994; 370: 270–275
  • Gu Y., Wu J., Faucheu C., Lalanne J. L., Diu A., Livingston D. J., Su M. S. Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J. 1995; 14: 1923–1931
  • Miller D. K., Ayala J. M., Egger L. A., Raju S. M., Yamin T. T., Ding G. J. P., Gaffney E. P., Howard A. D., Palyha O. C., Rolando A. M., Salley J. P., Thornberry N. A., Weidner J. R., Williams J. H., Chapman K. T., Jackson J., Kostura M. J., Limjuco G., Molineaux S. M., Mumford R. A., Calaycay J. R. Purification and characterization of active human interleukin-1β converting enzyme from THP. 1 monocytic cells. J. Biol. Chem. 1993; 268: 18062–18069
  • Thornberry N. A., Molineaux S. M. Interleukin-1β converting enzyme: A novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Science 1995; 4: 3–12
  • March C. J., Mosle B., Larsen A., Cerretti P., Braedt G., Price V., Gillis S., Henney C. S., Kronheim S. R., Grabstein K., Conlon P. J., Hopp T. P., Cosman D. Cloning sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 1985; 315: 641–647
  • Singer I. I., Scott S., Hall G. L., Limjuco G., Chin J., Schmidt J. A. Interleukin 1β is localized in the cytoplasmic ground substance but is largely absent from the golgi apparatus and plasma membranes of stimulated human monocytes. J. Exp. Med. 1988; 167: 389–407
  • Rubartelli A., Cozzolino F., Talio M., Sitia R. A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence. EMBO J. 1990; 9: 1503–1510
  • Hazuda D. J., Lee J. C., Young P. R. The kinetics of interleukin 1 secretion from activated monocytes. J. Biol. Chem. 1988; 263: 8473–8479
  • Yuan J., Shaham S., Ledoux S., Ellis H. M., Horvitz H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme. Cell 1993; 75: 641–652
  • Miura M., Zhu H., Rotello R., Hartwieg E. A., Yuan J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of C. elegans cell death gene. ced-3. Cell 1993; 75, 653–660
  • Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D.J. Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1 β converting enzyme. Cell 1992; 69: 597–604
  • Palumbo G. J., Pickup D. J., Fredrickson T. N., McIntyre L. J., Buller M. L. Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox. Virology 1989; 172: 262–273
  • Gagliardini V., Fernandez P.-A., Lee R. K. K., Drexler H. C. A., Rotello R. J., Fishman M. C., Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826–828
  • Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 1995; 267: 891–893
  • Nagata S., Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 1995; 16: 39–43
  • Tewari M., Dixit V. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the Poxvirus crmA gene product. J. Biol. Chem. 1995; 270: 3255–3260
  • Enarl M., Hug H., Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 1995; 375: 78–81
  • Los M., Van de Craen M., Penning L. C., Schenk H., Westendorp M., Baeuerie P. A., Droge W., Krammer P. H., Flers W., Schulze-Osthoff K. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 1995; 375: 81–83
  • Tamura T., Ishikhara M., Lamphier M. S., Tanaka N., Oishi I., Alzawa S., Matsuyama T., Mak T. W., Taki S., Taniguchi T. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 1995; 376: 596–599
  • Hengartner M. O., Ellis R. E., Horvitz H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992; 356: 494–499
  • Hengartner M. O., Horvitz H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene. bcl-2. Cell 1994; 76, 665–676
  • Tsujimoto Y., Cossman J., Jaffe E., Croce C. M. The t(14;18) chromosome translocation involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 228: 1440–1443
  • Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Einstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit of 18. Cell 1985; 41: 899–906
  • Cleary M. L., Smith S. D., Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47: 19–28
  • Korsmeyer S. J. Regulators of cell death. Trends Genet 1995; 11: 101–105
  • Hengartner M. O., Horvitz H. R. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 1994; 369: 318–320
  • Vaux D. L., Weissman I. L., Kim S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 1992; 258: 1955–1957
  • Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346–347
  • Gu Y., Sarnecki C., Aladape R. A., Livingston D. J., Su M. S. Cleavage of poly(ADP-dibose) polymerase by interleukin-1 β converting enzyme and its homologs TX and Need-2. J. Biol. Chem. 1995; 270: 18715–18718
  • Wang L., Miura M., Bergerson L., Zhu H., Yuan J. Ich-1, an Ice/ced-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739–750
  • Kumar S., Kinoshita M., Noda M., Copeland N. G., Jenkins N. A. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditits elegans cell death gene ced-3 and the mammalian II-1β-converting enzyme. Genes Dev. 1994; 8: 1613–1626
  • Darmon A. J., Nicholson D. W., Bleackley R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 1995; 377: 446–448
  • Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., King C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A., Munday N. A., Raju S. M., Smulson M. E., Yamin T. T., Yu V. L., Miller D. K. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 375: 37–43
  • Fernandes-Alnemri T., Litwack G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1β-converting enzyme. J. Biol. Chem. 1994; 269: 30761–30764
  • Smulson M., Istock N., Ding R., Cherney B. Deletion mutants of poly(ADP-ribose) polymerase support a model of cyclic association and dissociation of enzyme from DNA ends during DNA repair. Biochemistry 1994; 33: 6186–6191
  • Ding R., Smulson M. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influences on genomic stability, chromatin organization, and carcinogen cytotoxicity. Cancer Res. 1994; 54: 4627–4634
  • Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirer G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res. 1993; 53: 3976–3985
  • Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81: 801–809
  • Munday N. A., Vaillancourt J. P., Ali A., Casano F. J., Miller D. K., Molineaux S. M., Yamin T.-T., Yu V. L., Nicholson D. W. Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, Members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 1995; 270: 15870–15876
  • Faucheu C., Diu A., Chan A. W., Blancht A. M., Missec C., Here F., Collard-Dutilleul V., Gu Y., Aldape R. V., Lippke J. A., Rocher C., Su M. S., Livingston D. J., Hercend T., Lalanne J. L. A novel human proteinase similar to the interleukin-1 β converting enzyme induces apoptosis in transfected cells. EMBO J. 1995; 14: 1914–1922
  • Kamens J., Paskind M., Hugunin M., Talanian R. V., Allen H., Banach D., Bump N., Hackett M., Johnston C. G., Li P., Mankovich J. A., Terranova M., Ghayur T. Identification and characterization of ICH-2, a novel memeber of the interleukin-1 beta-converting enzyme family of cysteine proteases. J. Biol. Chem. 1995; 270: 15250–15256
  • Fernandes-Alnemri T., Litwack G., Alnemri E. S. McH2, a new member of the apoptotic Ced-3/Ice Cysteine protease gene family. Cancer Res. 1995; 55: 2737–2742
  • Fernandes-Alnemri T., Takahashi A., Armstrong R., Krebs J., Fritz L., Tomaselli K. J., Wang L., Yu Z., Croce C. M., Salveson G., Ernshaw W. C., Litwack G., Alnemri E. S. McH3, a novel human apoptosis protease highly related to CPP32. Cancer Res. 1995; 55: 6045–6052
  • Duan H., Chinnaiyan A. M., Hudson P. L., Wing J. P., He W.-W., Dixit V. M. ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 1996; 271: 1621–1625
  • Chinnaiyan A. M., Orth K., O'Rourke K., Duan H., Poirer G. G., Dixit V. M. Molecular ordering of the cell death pathway: Bcl-2 and Bcl-x function upstream of the CED-3-like apoptotic proteases. J. Biol. Chem., in press
  • Wang X., Pai J. T., Wiedenfeld E. A., Medina J. C., Slaughter C. A. Purification of an interleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J. Biol. Chem. 1995; 270: 18044–18050
  • Fernandes-Alnemri T., Litwack G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1β-converting enzyme. J. Biol. Chem. 1994; 269: 30761–30764
  • Kumar S., Harvey N. L. Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett. 1995; 375: 169–173
  • Young J. O.-E. Killing of target cells by lymphocytes: a mechanistic view. Physiol. Rev. 1989; 69: 250–314
  • Berke G. The CTL's kiss of death. Cell 1995; 81: 9–12
  • Jenne D. E., Tschopp J. Granzymes: A family of serine proteases in granules of cytolytic T lymphocytes. Curr. Top. Microbiol. Immunol. 1988; 140: 33–47
  • Smyth M. J., Trapani J. A. Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol. Today 1995; 16: 202–206
  • Berthou C., Marolleau J. P., LaFaurie C., Soulie A., Dal Cortivo L., Bourge J.-F., Benbunan M., Sesportes M. Granzyme B and perforin lytic proteins are expressed in CD34+ peripheral blood progenitor cells mobilized by chemotherapy and grandlocyte colony-stimulating factor. Blood 1995; 86: 3500–3506
  • Irmler M., Hertig S., Robson M., Sadoul R., Becherer J. D., Proudfoot A., Solari R., Tschopp J. Granzyme A is as interleukin-1 β-converting enzyme. J. Exp. Med. 1995; 181: 1917–1922
  • Xue D., Horvitz R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a Ced-3 cleavage site in baculovirus p35 protein. Nature 1995; 377: 248–251
  • Wang Z. O., Auer B., Stingl L., Berghammer H., Haidacher D., Schweiger M., Wagner E. F. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995; 9: 509–20
  • Lazebnik Y. A., Takahashi A., Moir R. D., Goldman R. D., Poirier G. G., Kaufmann S. H., Earnshaw W. C. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 1995; 92: 9042–9046
  • Pushkareva M., Obeid L. M., Hannun Y. A. Ceramid: an endogenous regulator of apoptosis and growth suppression. Immunol. Today 1995; 16: 294–297
  • Kolesnick R. N., Haimovitz-Freedman A., Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor. Fas. and ionizing radiation. Biochem. Cell Biol. 1994; 72: 471–474
  • Chinnaiyan A. M., Tepper C. G., Seldin M. F., O'Rourke K., Kischkel F. C., Hellbardt S., Krammer P. H., Peter M. E., Dixit V. M. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1)- and TNF-receptor-induced apoptosis. J. Biol. Chem., in press
  • Li P., Allen H., Banerjee S., Franklin S., Herzog L., McDowell J., Paskind M., Rodman L., Salfeled J., Towne E., Tracey D., Wardwell S., Wet F.-Y., Wong W., Kamen R., Seshardi T. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 1995; 80: 401–411
  • Kuida K., Lippke J. A., Ku G., Harding M. W., Livingston D. J., Su M. S., Flavell R. A. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 1995; 267: 2000–2003
  • Komiyama T., Ray C. A., Pickup D. J., Howard A. D., Thornberry N. A., Peterson E. P., Salvesen G. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin crmA. J. Biol. Chem. 1994; 269: 19331–19337
  • Clem R. J., Fechheimer M., Miller L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991; 254: 1388–1390
  • Sugimoto A., Friesen P. D., Rothman J. H. Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode. Caenorhabditis elegans. EMBO J 1994; 13, 2023–2028
  • Shaw E. Cysteinyl proteinases and their selective inactivation. Adv. Enzymol. 1990; 63: 271–347
  • Miller B. E., Krasney P. A., Gauvin D. M., Holbrook K. B., Koonz D. J., Abruzzese R. V., Miller R. V., Pagani Ka, Dole R. E., Ator M. A., Gilman S. C. Inhibition of mature IL-1β production in mature macrophages and a murine model of inflammation by WIN 67694, an inhibitor of IL-1β converting enzyme. J. Immunol. 1995; 154: 1331–1338
  • Robinson R. P., Donahue K. M. Synthesis of a peptidyl difluoro ketone bearing the aspartic acid side chain: An inhibitor of interleukin-1β converting enzyme. J. Org. Chem. 1992; 57: 7309–7314
  • Rambaldi A., Torcia M., Bettoni S., Vannier E., Barbui T., Shaw A. R., Dinarello C. A., Cozzolino F. Modulation of cell proliferation and cytokine production in acute myeloblastic leukemia by interleukin-1 receptor antagonist and lack of its expression by leukemic cells. Blood 1991; 78: 3248–3253
  • Yin M., Gopal V., Banavali S., Gartside P., Preisler H. Effect of an IL-1 receptor antagonist on acute myeloid leukemia cells. Leukemia 1992; 6: 898–901
  • Estrov Z., Black R., Sleath P. R., Harris D., Van Q., LaPushin R., Estey E., Talpaz M. Effect of interleukin-1 β converting enzyme inhibitor on acute myelogenous leukemia progenitor proliferation. Blood 1995; 86: 4594–4602
  • Kettner C., Shaw E. Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. Methods in Enzymology. Vol. 80, Proteolytic Enzymes. Part C, L. Lorand. Academic Press Inc, Orland FL 1989; 826–842, 826842
  • Stosic-Grujcic S., Basara N., Milenkovic P., Dimarello C.A. Modulation of acute myeloblastic leukemia (AML) cell proliferation and blast colony formation by anti-sense oligomer for IL-1 beta converting enzyme (ICE) and IL-1 receptor antagonist (IL-lra). J. Chemother 1995; 7: 67–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.