70
Views
18
CrossRef citations to date
0
Altmetric
Original Article

The Role of Autologous Natural Killer Cells in Chronic Myelogenous Leukemia

&
Pages 387-399 | Received 26 Jan 1997, Published online: 01 Jul 2009

References

  • Dube I. D., Gupta C. M., Kalousek D. K., Eaves C. J., Eaves A. C. Cytogenetic studies of early myeloid progenitor compartments in Phi positive chronic myelogenous leukemia. Br J Haematol 1984; 56: 633
  • Bernstein R. Cytogenetics of chronic myelogenous leukemia. Semin Hematol 1988; 25: 20
  • DeKlein A., Van Kessel A. G., Grosveld G., Bartram C. R., Hagemeijer A., Bootsma D., Spurr N. K., Heisterkamp N., Groffen J., Stephenson J. R. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 1982; 300: 765
  • Cashman J., Eaves A. C., Eaves C. J. Regulated proliferation of primitive hematopoietic progenitors in long‐term human marrow cultures. Blood 1985; 66: 1002
  • Verfaillie C., Blakolmer K., McGlave P. Purified primitive human hematopoietic progenitor cells with long‐term in vitro repopulating capacity adhere to selectively to irradiated bone marrow stroma. J Exp Med 1990; 172: 509–520
  • Gordon M. Y., Dowding C. R., Riley M. P., Goldman J. P., Greaves M. F. Altered adhesive interactions with marrow stroma of hematopoietic progenitor cells in chronic myelogenous leukemia. Nature 1984; 328: 342
  • Verfaillie C. M., McCarthy J. B., McGlave P. B. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia: Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. J Clin Invest 1992; 90: 1232
  • Eaves A. C., Cashman J. D., Gaboury L. A., Kalousek D. K., Eaves C. J. Unregulated proliferation of primitive chronic myelogenous leukemia progenitors in the presence of normal marrow adherent cells. Proc Natl Acad Sci USA 1986; 83: 5306
  • Bhatia R., McGlave P. B., Dewald G. W., Blazar B. R., Verfaillie C. M. Abnormal function of the bone marrow microenvironment in chronic myelogenous Iwukemia: Role of malignant stromal macrophages. Blood 1995; 85: 3636–3645
  • Pawelec G., Schmidt H., Schneider E., Burning H. J., Ehninger G. Cellular immunological defects of chronic myelogenous leukaemics: Partial dependence on busulphan therapy. Cancer Immunol Immunother 1988; 27: 89–94
  • Gibson F. M., Malkovska V., Myint A. A., Meager A., Gordon‐Smith E. C. Mechanism of suppression of normal hematopoietic activity by lymphokine‐activated killer cells and their products. Exp Hematol 1991; 19: 659–663
  • Miller S. C., Christopher F. L. Altered production and renewal of natural killer cells in B‐lymphocyte‐deficient CBA/N mice. Nat Immun Cell Growth Reg 1989; 8: 245–254
  • Talpaz M., Kantajian H. M., Kurzrock R., Trujillo J. M., Gutterman J. U. Interferon‐alpha produces sustained cytogenetic responses in chronic myelogenous leukemia Philadelphia chromosome positive patients. Ann Intern Med 1991; 114: 532–538
  • Ellis T., McKenzie R., Simms P., Helfrich B., Fisher R. Induction of human lymphokine‐activated killer cells by IFN‐α and IFN‐à. J Immunol 1989; 143: 4282
  • Dabholkar M., Advani S., Tatake R., Gangal S. Natural and antibody‐dependent cellular cytotoxicity in chronic myelogenous leukemia patients in remision. Leukemia Research 1986; 10: 203–209
  • Klingemann H. G., Grigg A. P., Wilkie‐Boyd K., Barnett M. J., Eaves A. C., Reece D. E., Shepard J. D., Phillips G. L. Treatment with recombinant interferon (a‐2b) early after bone marrow transplantation in patients at high risk for relapse. Blood 1991; 78: 3306–3311
  • Upadhyaya G., Guba S. C., Sih S. A., Feinberg A. P. M. T., Kantarjian H. M., Deisseroth A. B., Emerson S. G. Interferon‐alpha restores the deficient expression of the cytoadhesion molecule lymphocyte function antigen‐3 by chronic myelogenous leukemia progenitor cells. J Clin Invest 1991; 88: 2131–2136
  • Bhatia R., Wayner E. A., McGlave P. B., Verfaillie C. M. Interferon‐α restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired β1 integrin receptor function. J Clin Invest 1994; 94: 384
  • Bhatia R., McGlave P. B., Verfaillie C. M. Treatment of marrow stroma with interferon‐a restores normal β1 integrin‐dependent adhesion of chronic myelogenous leukemia hematopoietic progenitors: Role of MIP‐1α. J Clin Invest. 1995; 96: 931–939
  • Bhatia R., McCarthy J. B., Verfaillie C. M. Interferon‐α restores normal β1 integrin‐mediated inhibition of hematopoietic progenitor proliferation by the marrow microenvironment in chronic myelogenous leukemia. Blood 1996; 87: 3883–3891
  • Miller J. S., McGlave P. B. Therapy for chronic myelogenous leukemia with marrow transplantation. Curr Opin Oncol 1993; 5: 262–269
  • Marmont A. M., Horowitz M. M., Gale R. P., Sobocinski K., Ash R. C., van Bekkum D. W., Champlin R. E., Dicke K. A., Goldman J. M., Good R. A., Herzig R. H., Hong R., Masaoka T., Rimm A. A., Ringden O., Speck B., Wiener R. S., Bortin M. M. T‐cell depletion of HLA‐identical transplants in leukemia. Blood 1991; 78: 2120
  • Jiang Y. Z., Kanfer E. J., MacDonald D., Cullis J. O., Goldman J. M., Barrett A. J. Graft‐versus‐leukemia following allogeneic bone marrow transplantation: Emergence of cytotoxic T lymphocytes reacting to host leukemia cells. Bone Marrow Transplant 1991; 8: 253–258
  • Mackinnon S., Bungey J., Chase A., Paulsen W., Hows J. M., Goldman J. M. Origin and function of adherent lymphokine activated killer cells in patients with chronic myeloid leukemia who relapse following bone marrow transplantation. Brit J of Haematology 1991; 77: 60–65
  • Mackinnon S., Hows J. M., Goldman J. M. Induction of in vitro graft‐versus‐leukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood 1990; 76: 2037–2045
  • Enright H., Davies S. M., DeFor T., Shu X., Weisdorf D., Miller W., Ramsay N. K. C., Arthur D., Verfaillie C., Miller J., Kersey J., McGlave P. Relapse after non‐T‐cell‐depleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: Early transplantation, use of an unrelated donor, and chronic graft‐versus‐host disease are protective. Blood 1996; 88: 714–720
  • Champlin R. Allogeneic, syngeneic and autologous bone marrow transplantation for chronic myelogenous leukemia. Leukemia 1993; 7: 1084–1086
  • Kolb H. J., Schattenberg A., Goldman J. M., Hertenstein B., Jacobsen N., Arcese W., Ljungman P., Ferrant A., Verdonck L., Niederwieser D., van Rhee F., Mittermueller J., de Witte T., Holler E., Ansari H. Graft‐versus‐leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050
  • Mackinnon S., Papadopoulos E. B., Carabasi M. H., Reich L., Collins N. H., Boulad F., Castro‐Malaspina H., Childs B. H., Gillio A. P., Kernan N. A., Small T. N., Young J. W., O'Reilly R. J. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: Separation of graft‐versus‐leukemia responses from graft‐versus‐host disease. Blood 1995; 86: 1261–1268
  • Verfaillie C. M., Bhatia R., Miller W., Mortari F., Roy V., Burger S., McCullough J., Stieglbauer K., Dewald G., Heimfeld S., Miller J. S., McGlave P. B. BCR/ABL‐negative primitive progenitors suitable for transplantation can be selected from the marrow of most early‐chronic phase but not accelerated‐phase chronic myelogenous leukemia patients. Blood 1996; 87: 4470–4479
  • Miller J. S., Verfaillie C., McGlave P. B. Adherent lymphokine‐activated killer cells suppress autologous human normal bone marrow progenitors. Blood 1991; 77: 2389–2395
  • Miller J. S., Oelkers S., Verfaillie C., McGlave P. B. Role of monocytes in the expansion of human activated natural killer cells. Blood 1992; 80: 2221–2229
  • Mule J. J., Shu S., Rosenberg S. A. The antitumor efficacy of lymphokine‐activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985; 135: 646–652
  • Hercend T., Farace F., Baume D., Charpentier F., Droz J., Triebel F., Escudier B. Immunotherapy with lymphokine‐activated natural killer cells and recombinant interleukin‐2: A feasibility trial in metastatic renal cell carcinoma. J Biol Resp Mod 1990; 9: 546–555
  • Melder R. J., Balachandran R., Rinaldo C. R., Gupta P., Whiteside T. L., Herberman R. B. Cytotoxic activity against HIV‐infected monocytes by recombinant interleukin 2‐activated natural killer cells. AIDS Res Hum Retroviruses 1990; 6: 1011–1015
  • Robertson M. J., Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990; 76: 2421–2438
  • Rosenberg S., Lotze M., Muul L., Leitman S., Chang A., Ettinghausen S., Matory Y., Skibber J., Shiloni E., Vetto J., Siepp C., Simpson C., Reichert C. Observations on the systemic administration of autologous lymphokine‐activated killer cells and recombinant interleukin‐2 to patients with cancer. N Engl J of Med 1985; 313: 1485–1492
  • Schmidt R. E. Natural Killer Cells: Biology and Clinical Application. The 6th International Natural Killer Cell Workshop. Goslar, New York 1989
  • Trinchieri G. Biology of Natural Killer Cells. Advances in Immunology 1989; 47: 187–375
  • Pierson B. A., Miller J. S., Verfaillie C., McGlave P. B., Hu W. S. Population dynamics of human activated natural killer cells in culture. Bioengineering and Biotechnology 1994; 43: 685–692
  • Rosenberg S., Lotze M., Muul L., Chang A., Avis F., Leitman S., Lineham W., Robertson C., Lee R., Rubin J., Siepp C., Simpson C., White D. A progress report on the treatment of 157 patients with advanced cancer using lymphokine‐activated killer cells and interleukin‐2 or high‐dose interleukin‐2 alone. N Engl J Med 1987; 316: 889–897
  • Whiteside T. L., Ernstoff M. S., Nair S., Kirkwood J. M., Herberman R. B. In vitro generation and in vivo effects of adherent lymphokine‐activated killer cells and IL‐2 in patients with solid tumors. Natural Killer Cells: Biology and Clinical Significance, R. E. Schmidt. Karger, BaselSwitzerland 1990; 293
  • Lotzova E. Role of natural killer cells in defense against leukemia: Therapeutic considerations. Nat lmmun Cell Growth Regul 1988; 7: 170–179
  • Lotzova E., Savary C. A., Herberman R. B. Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL‐2 stimulated NK cells of normal donors. Leukemia Research 1987; 11: 1059–1066
  • Savary C. A., Lotzova E. Natural killer cell‐mediated inhibition of growth of myeloid and lymphoid clonogenic leukemias. Exp Hematol 1989; 17: 183–187
  • Verfaillie C., Miller W., Kay N., McGlave P. B. Adherent lymphokine‐activated killer cells in chronic myelogenous leukemia: A benign cell population with potent cytotoxic activity. Blood 1989; 74: 793–797
  • Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. Lymphokine‐activated killer cell phenomenon. Lysis of natural killer‐resistant fresh solid tumor cells by interleukin‐2 activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155: 1823–1841
  • Cervantes F., Pierson B. A., McGlave P. B., Verfaillie C. M., Miller J. S. Autologous activated natural killer cells suppress primitive chronic myelogenous leukemia progenitors in long‐term culture. Blood 1996; 87: 2476–2485
  • Pawelec G., Da Silva P., Max H., Kalbacher H., Schmidt H., Bruserud O., Zugel U., Baier W., Rehbein A., Pohla H. Relative roles of natural killer‐ and T‐cell‐mediated anti‐leukemia effects in chronic myelogenous leukemia patients treated with interferon‐α. Leukemia and Lymphoma 1995; 18: 471–478
  • Schwarz R. E., Felgar R. E., Hiserodt J. C. Successful adoptive immunotherapy of established lung and liver metastases with highly purified IL‐2 activated natural killer cells (A‐LAK cells). Natural Killer Cells: Biology and Clinical Significance, R. E. Schmidt. Karger, BaselSwitzerland 1990; 303–306
  • Herberman R. B., Hiserodt J., Vujanovic N., Balch C., Lotzova E., Bohlius R., Golub S., Lanier L. L., Phillips J. H., Riccardi C., Ritz J., Santoni A., Schmidt R. E., Uchida A. Most lymphokine‐activated killer (LAK) activity mediated by blood and splenic lymphocytes is attributable to stimulation of natural killer cells by interleukin‐2. Immunol Today 1987; 8: 178–181
  • van den Brink M. R. M., Hunt L. E., Hiserodt J. C. In vivo treatment with monoclonal antibody 3. 2. 3 selectively eliminates natural killer cells in rats. Natural killer cells: Biology and Clinical Significance, R. E. Schmidt. Karger, BaselSwitzerland 1990; 307
  • Jonas D., Lubbert M., Kawasaki E. S., Henke M., Bross K. J., Mertelsmann R., Herrmann F. Clonal analysis of bcr‐abl rearrangement in T‐lymphocytes from patients with chronic myelogenous leukemia. Blood 1992; 79: 1017–1023
  • Torlakovic E., Litz C. E., McClure J. S., Brunning R. D. Direct detection of the Philadelphia chromosome in CD20‐positive lymphocytes in chronic myeloid leukemia by tri‐colorimmunophenotyping/FISH. Leukemia 1994; 8: 1940–1943
  • Vujanovic N. L., Herberman R. B., Maghazachi A. A., Hiserodt J. C. Lymphokine‐activated killer cells in rats. III. A simple method for purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine‐activated killer cells. J Exp Med 1988; 167: 15–29
  • Melder R., Whiteside T., Vujanovic N., Hiserodt J., Herberman R. Human adherent lymphokine‐activated killer (A‐LAK) cells: A new approach to generating antitumor effectors for adoptive immunotherapy. Cancer Res 1988; 48: 3461–3469
  • Verfaillie C., Kay N., Miller W., McGlave P. B. Diminished A‐LAK cytotoxicity and proliferation accompanies disease progression in chronic myelogenous leukemia. Blood 1990; 76: 401–408
  • Silla L. M., Pincus S. M., Locker J. D., Glover J., Elder E. M., Donnenberg A. D., Nardi N. B., Bryant J., Ball E. D., Whiteside T. L. Generation of activated natural killer (A‐NK) cells in patients with chronic myelogenous leukaemia and their role in the in vitro disappearance of bcr/abl positive targets. Brit J Haematol 1996; 93: 375–385
  • Warzynski C., White C., Golightly M. G., Steingart R., Otto R. N., Podgurski A. E., Johnson M. L., Glynn P., Smith D. E. Natural killer lymphocyte blast crisis of chronic myelogenous leukemia. Amer J Hematol 1989; 32: 279–286
  • Miller J. S., Verfaillie C., McGlave P. B. The generation of human natural killer cells from CD34+/DR~ primitive progenitors in long‐term bone marrow culture. Blood 1992; 80: 2182–2187
  • Miller J. S., Alley K. A., McGlave P. B. Differentiation of natural killer cells from human primitive marrow progenitors in a stroma based long term culture system: Identification of a CD34+/CD7+ NK progenitor. Blood 1994; 83: 2594–2601
  • Sitnicka E., Hannson M. Natural killer cell activity in human long‐term bone marrow cultures: Effects of IL‐2 and granulocyte‐macrophage colony stimulating factor on progenitor cells. Immunol 1992; 76: 292–298
  • Pierson B. A. Ex vivo expansion of human natural killer cells (NK) for adoptive immunotherapy. University of Minnesota. 1995
  • Pierson B. A., Europa A. F., Hu W. S., Miller J. S. Production of human natural killer cells for adoptive immunotherapy utilizing a computer‐controlled stirred‐tank bioreactor. J of Hematother 1996; 5: 475–483
  • Pierson B. A., Gupta K., Hu W. S., Miller J. S. Human natural killer cell expansion is regulated by throm‐bospondin‐mediated activation of TGF‐β1 and independent accessory cell‐derived contact and soluble factors. Blood 1996; 87: 180–189
  • Murphy‐Ullrich J. E., Schultz‐Cherry S., Hook M. Transforming growth factor‐β complexes with throm‐bospondin. Mol Biol Cell 1992; 3: 181–188
  • Schultz‐Cherry S., Murphy‐Ullrich J. E. Thrombo‐spondin causes activation of latent transforming growth factor‐β secreted by endothelial cells by a novel mechanism. J Cell Biol 1993; 122: 923–932
  • Schultz‐Cherry S., Ribeiro S., Gentry L., Murphy‐Ullrich J. E. Thrombospondin binds and activates the small and large forms of latent transforming growth factor‐β in a chemically defined system. J Biol Chem 1994; 269: 26775–26782
  • Schultz‐Cherry S., Lawler J., Murphy‐Ullrich J. E. The type 1 repeats of thrombospondin 1 activate latent transforming growth factor‐β. J Biol Chem 1994; 269: 26783–26788
  • Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII‐positive and negative natural killer cells. J Immunol 1989; 143: 3183–3191
  • Ellis T. M., Fisher R. I. Functional heterogeneity of Leu 19 “bright” + and Leu 19 “dim” + lymphokine‐activated killer cells. J Immunol 1989; 142: 2949–2954
  • Nagler A., Lanier L. L., Phillips J. H. Constitutive expression of high affinity interleukin 2 receptors on human CD16‐natural killer cells in vivo. J Exp Med 1990; 171: 1527–1533
  • Robertson M. J., Manley T. J., Donahue C., Levine H., Ritz J. Costimulatory signals are required for optimal proliferation of human natural killer cells. J Immunol 1993; 150: 1705–1714
  • Pierson B. A., Miller J. S. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli which recruit clonogenic NK, and exhibit decreased proliferation on a per cell basis. Blood 1996; 88: 2279–2287
  • Miller J. S., Klingsporn S., Lund J., Perry E. H., Verfaillie C., McGlave P. Large‐scale ex vivo expansion and activation of human natural killer cells for autologous therapy. Bone Marrow Transplantation 1994; 14: 555–562
  • Fujimiya Y., Bakke A., Chang W. C., Linker‐Israeli M., Udis B., Horwitz D., Pattengale P. K. Natural killer cell immunodeficiency in patients with chronic myeloid leukemia I: Analysis of the deficit using the antibodies NKH1 (leu‐7) and B73.1. J Cancer 1986; 37: 639–649
  • Lotzova E., Savary C. A., Herberman R. B. Induction of NK cell activity against fresh human leukemia in culture with interleukin‐2. J Immunol 1987; 138: 2718
  • Pawelec G., Schneider E., Ehninger G., Rehbein A., Schmidt H. Partial correction of defective generation of lymphokine‐activated killer cells in patients with chronic myelogenous leukaemia after in vivo treatment with interferon‐α (Wellferon). Cancer Immunol Immunother 1989; 29: 63–66
  • Jacobs R., Stoll M., Stratmann G., Leo R., Link H., Schmidt R. E. CD16‐ CD56+ natural killer cells after bone marrow transplantation. Blood 1992; 79: 3239
  • Laughlin M., Loftus J., Herzig G. P., Caligiuri T., Caligiuri M. Natural killer (NK) activity following dose intensive chemotherapy. (Abstract). Blood 1993; 82: 242a
  • Reittie J. E., Gottlieb D., Heslop H. E., Leger O., Drexler H. G., Hazelhurst G., Hoobrand A. V., Prentice H. G., Brenner M. K. Endogenously generated activated natural killer cells circulate after autologous and allogeneic marrow transplantation but not after chemotherapy. Blood 1989; 73: 1351–1358
  • Soiffer R. J., Murray C., Cochran K., Cameron C., Wang E., Schow P. W., Daley J. R., Ritz J. Clinical and immunologic effects of prolonged infusion of low‐dose recombinant interleukin‐2 after autologous and T‐cell‐depleted allogeneic bone marrow transplantation. Blood 1992; 79: 517–526
  • Miller J. S., Tessmer‐Tuck J., Pierson B. A., Weisdorf D., McGlave P., Blazar B., Katsanis E., Verfaillie C., Lebkowski J., Radford J., Bums L. Low‐dose subcutaneous interleukin‐2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biology of Blood and Marrow Transplantation 1997, in press
  • Miller J. S., Tessmer‐Tuck J., Blake N., Lund J., Scott A., Blazar B. R., Orchard P. J. Endogenous IL‐2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral‐mediated gene transfer. Exp Hematol 1997, in press
  • Pierson B. A., McGlave P. B., Hu W. S., Miller J. S. Natural killer cell proliferation is dependent on human serum and is markedly increased utilizing an enriched supplemented basal medium. J Hematotherapy 1995; 4: 149–158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.