28
Views
3
CrossRef citations to date
0
Altmetric
Original Article

The Human Thrombin Receptor Gene and the 5q-Syndrome

&
Pages 1-10 | Published online: 01 Jul 2009

References

  • Berghe Van Den H., Cassiman J. J., David G., Fryns J. P., Michaux J. L., Sokal G. Distinct haematological disorder with deletion of long arm of number 5 chromosome. Nature 1974; 251: 437–438
  • Boultwood J., Lewis S., Wainscoat J. S. The 5q-syndrome. Blood 1994; 84: 3253–3260
  • Nagarajan L. Molecular analysis of the 5q-chromo-some. Leukemia and Lymphoma 1995; 17: 361–366
  • Mathew P., Tefferi A., Dewald G. W., Goldberg S. L., Su J., Hoagland H. C., Noel P. The 5q-syndrome: A single-institution study of 43 consecutive patients. Blood 1993; 81: 1040–1045
  • Willman C. L., Sever C. E., Pallavicini M. G., Harada H., Tanaka N., Slovak M. L., Yamamoto H., Meeker T. C., List A. F., Taniguchi T. Deletion of IRF-l, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993; 259: 968–971
  • Nagarajan L., Zavadil J., Claxton D. F., Xiaoyan L., Fairman J., Warrington J. A., Wasmuth J. J., Chinault A. C., Sever C. E., Slovak M. L., Willman C. L., Deisseroth A. B. Consistent loss of the D5S89 locus mapping telomeric to the interleukin gene cluster and centromeric to EGR-l in patients with 5q-chromosome. Blood 1994; 83: 199–208
  • LeBeau M. M., Espinosa R., III, Neuman W. L., Stock W., Roulston D., Larson R. A., Keinanen M., Westbrook C. A. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proceedings of the Notional Academy of' Sciences USA 1993; 90: 5484–5488
  • Boultwood J., Fidler C., Lewis S., Kelly S., Sheridan H., Littlwood T. J., Buckle V. J., Wainscoat J. S. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q-syndrome: delineation of the critical region on 5q and identification of a 5q-breakpoint. Genomics 1994; 19: 425–432
  • Dohlman H., Thorner J., Caron M., Lefkowitz R. Model systems for the study of seven-transmembrane-segment receptors. Annual Review of Biochemistry 1991; 60: 653–688
  • Vu T., Hung D., Wheaton V., Coughlin S. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068
  • Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. European Journal of Biochemistry 1994; 91: 9208–9212
  • Vu T., Wheaton V., Hung D., Charo L, Coughlin S. Domains specifying thrombin-receptor interaction. Nature (London) 1991; 353: 674–677
  • Chen J., Ishii M., Wang L., Ishii K., Coughlin S. R. Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. Journal of Biologicul Chemistry 1994; 269: 16041–16045
  • Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen V., Pavirani A., Lecocq J., Pouyssegur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unahle to induce mitogenesis. Molecular Cell Biology 1991; 3: 95–102
  • McGowan E., Detwiller T. Modified platelet responses to thrombin. Evidence for two types of receptors or coupling mechanisms. Journal of Biological Chemistry 1987; 261: 739–746
  • Chambard J., Paris S., L'Allemain G., Pouyssegur J. Two growth factor signalling pathways in fibrohlasts distinguished by pertussis toxin. Nature 1987; 326: 800–803
  • Scarborough R., Naughton M., Teng W., Hung D., Rose J., Vu T., Wheaton V., Turck C., Coughlin S. Tethered ligand agonist peptides: structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. Journal of Biological Chemistry 1992; 267: 13146–13149
  • Vassallo J. R. R., Kieber-Emmons T., Cichowski K., Brass L. F. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. Journal of Biological Chemistry 1992; 267: 6081–6085
  • Coller B. S., Ward P., Ceruso M., Scudder L. E., Springer K., Kutok J., Prestwich G. D. Thrombin receptor activating peptides: Importance of the N-terminal serine and its ionization state as judged by pH-dependence, nuclear magnetic resonance spectroscopy, and cleavage by aminopepti-dase. M. Biochemistry 1992; 31: 11713–11720
  • Bahou W., Kutok J., Wong A., Potter C., Coller B. Identification of a thrombin receptor sequence specifying activation-dependent responses. Blood 1994; 84: 4195–4202
  • Gerstzen R. E., Chen J., Ishii M., Ishii K., Wang L., Nanevicz T., Turck C. W., Vu T. H., Coughlin S. K. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Narure 1994; 368: 648–651
  • Bahou W., Coller B., Potter C., Norton K., Kutok J., Goligorsky M. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation. Journal of Clinical Investigation 1993; 91: 1405–1413
  • Ngaiza J., Jaffc E. A 14 amino acid peptide derived from the amino terminus of the cleaved thrombin receptor elevates intracellular calcium and stimulates prostacyclin production in human endothelial cells. Biochemical Biophysical Research Communication 1991; 179: 1656–1661
  • Zhong C., Hayzer D., Corson M., Runge M. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vivo regulation by basic fibroblast growth factor. Journal of Biological Chemistry 1992; 267: 16975–16979
  • Mari B., Imbert V., Belhacene N., Far D. F., Peyron J., Pouysségur J., Van Obberghen-Schilling E., Rossi B., Auberger P. Thrombin and thrombin receptor agonist peptide induce early events of T-cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. Journal of Biological Chemistry 1994; 269: 8517–8523
  • Hoffman M., Church F. C. Response of blood leukocytes to thrombin receptor peptides. Journal of Leukocyte Biology 1993; 54: 145–151
  • Zimmerman B. J., Arrhenius T. S., Gaeta F. C. A., Granger D. N. Thrombin receptor peptide-mediated leukocyte rolling in rat mesenteric venules: roles of P-selectin and sialyl Lewis X. American Journal of Physiology 1994; 267: H1049–H1053
  • Lau L. F., Pumiglia K., Cote Y. P., Feinstein M. B. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators. Biochemical Journal 1994; 303: 391–400
  • Mirza H., Yatsula V., Bahou W. F. The pro-teinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. Molecular characterization and evidence for functional coupling to the thrombin receptor. Journal of Clinical Investigation 1996; 97: 1705–1714
  • Santulli R. J., Derian C. K., Darrow A. U, Tomko K. A., Eckardt A. J., Seiberg M., Scarborough R. M., Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proceedings of the National Academy of Sciences USA 1995; 92: 9151–9155
  • Bohm S. K., Kong W. Y., Bromme D., Smeekens S. P., Anderson D. C., Connolly A., Kahn M., Nelken N. A., Coughlin S. R., Payan D. G., Bunnett N. W. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochemical Journal 1996; 314: 1009–1016
  • Connolly A. J., Ishihara H., Kahn M. L., Farese R. V., Coughlin S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 1996; 38: 516–519
  • Kinlough-Rathbone R. L., Rand M. L., Packham M. A. Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood 1993; 82: 103–106
  • Connolly T. M., Condra C., Feng D., Cook J. J., Straineri M. T., Reilly C. F., Nutt R. F., Gould R. J. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thrombosis and Haemostasis 1994; 72: 627–633
  • Bahou W. F., Nierman W. C., Durkin A. S., Potter C. L., Demetrick D. J. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood 1993; 82: 1532–1537
  • Nystedt S., Emilsson K., Larsson A. K., Strombeck B., Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. European Journal of Biochemistry 1995; 232: 84–89
  • Schmidt V., Demetrich D., Bahou W. Genomic cloning and characterization of the human thrombin receptor gene: evidence for a novel gene family that includes PAR-2. Journal of Biological Chemistry 1996; 271: 9307–9312
  • van Leeuwen B. H., Martinson M. E., Webb G. C., Young I. G. Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood 1989; 73: 1142–1148
  • Rowen L., Koop B., Hood L. The complete 685-kilobase DNA sequence of the human β T-cell receptor locus. Science 1996; 272: 1755–1762
  • Jakobovits E. B., Schlokat U., Vannice J. L., Derynck R., Levinson A. D. The human transforming growth factor alpha promoter directs transcription initiation from a single site in the absence of a TATA sequence. Molecular Cell Biology 1988; 8: 5549–5554
  • Villa-Garcia M., Li L., Riely G., Bray P. F. Isolation and characterization of a TATA-less promoter for the human beta 3 integrin gene. Blood 1994; 83: 668–676
  • Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annual Review of Biochemistry 1981; 50: 349–383
  • Martin D. I., Zon L. I., Mutter G., Orkin S. H. Expression of an erythroid transcription factor in megakary-ocytic and mast cell lineages. Nature 1990; 344: 444–447
  • Berghe Van Den H., LeBeau M., Benheim A. Fourth International Workshop on Chromosomes in Leukemia 1982: Deletion of 5q. Cancer Genetics and Cytogenetics 1984; 11: 296–299
  • Mitelman F., Manolova Y., Manolova G., Billstrom R., Heims S., Kristofferson U., Mandahl N. Analysis of the 5q marker chromosome in refractory anemia. Hereditas 1986; 195: 49
  • Pedersen B., Jensen I. M. Clinical and prognostic implications of chromosome 5q deletions: 96 high resolution studied patients. Leukemia 1991; 5: 566
  • Bellomo M. J., Parlier V., Mühlematter D., Grob J. P., Beris P. Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome. Cancer Genetics and Cytogenetics 1992; 59: 138–160
  • Foster D. C., Sprecher C. A., Grant F. J., Kramer J. M., Kuijper J. L., Holly R. D., Whitmore T. E., Heipel M. D., Bell L. A., Ching A. F. T., McGrane V., Hart C., O'Hara P. J., Lok S. Human thrombopoietin: Gene structure, cDNA sequence, expression, and chromosomal localization. Proceedings of the National Academy of Sciences USA 1994; 91: 13023–13027
  • Sohma Y., Akahori H., Seki N., Hori T., Ogami K., Kato T., Shimada Y., Kawamura K., Miyazaki H. Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Letters 1994; 353: 57–61
  • Bouscary D., Fontenay-Roupie M., Chretien S., Hardy A. C., Viguié F., Picard F., Melle J., Dreyfus F. Thrombopoietin is not responsible for the thrombocytosis observed in patients with acute myeloid leukemias and the 3q21q26 syndrome. British Journal of Haematology 1995; 91: 425–427
  • Suzukawa K., Satoh H., Taniwaki M., Yokota J., Morishita K. The human thrombopoietin gene is located on chromosome 3q26.33-q27, but is not transcription-ally activated in leukemia cells with 3q21 and 3q26 abnormalities (3q21q26 syndrome). Leukemia 1995; 9: 1328–1331
  • Vittet D., Chevillard C. Thrombin interactions with cells of the megakaryocytic lineage. Blood Coagulation and Fibrinolysis 1993; 4: 759–768
  • Dorn G. W., III, Davis M. G. Thrombin, but not thromboxane, stimulates megakaryocytic differentiation in human megakaryoblastic leukemia cells. The Journal of Pharmacology and Experimental Therapeutics 1992; 262: 1242–1247
  • Vittet D., Mathieu M. N., Launay J. M., Chcvillard C. Thrombin inhibits proliferation of the human megakaryoblastic MEG-01 cell line: a possible involvement of a cyclic-AMP dependent mechanism. Journal of Cell Physiology 1992; 150: 65–75
  • Plantier J., Berthier R., Rival Y., Schweitzer A., Rabiet J. Evidence for a selective inhibitory effect of thrombin on megakaryocyte progenitor growth mediated by the thrombin receptor. British Journal of Haematology 1994; 87: 755–762
  • Demetrick D. J., Dewald G. W., Lanman J., Bahou W. F. The thrombin receptor gene is centromeric to the common proximal breakpoint in patients with the 5q-syndrome: identification of a previously unrecognized chromosome 5 inversion. British Journal of Haematology 1996; 92: 339–343
  • Mecucci C., Berghe Van Den H., Michaux J., Bosly A., Doyen C. Paracentric inversions on the long arm of chromosome 5 in secondary myelodysplastic disorders. Cancer Genetics and Cytogenetics 1987; 29: 171–173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.