46
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Acute Promyelocytic Leukemia as a Model for Cross-Talk Between Interferon and Retinoic Acid Pathways: From Molecular Biology to Clinical Applications

, , , &
Pages 11-22 | Received 27 Jul 1997, Published online: 01 Jul 2009

References

  • Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Gallon D. A. G., Gralnick H. R., Sultan C. Proposal for the classification of the acute leukemias. Br. J. Haematol. 1976; 33: 451–458
  • Groopman J., Ellman L. Acute promyelocytic leukemia. Am. J. Hematol. 1979; 7: 395–408
  • Stone R. M., Mayer R. J. The unique aspects of acute promyelocytic leukaemia. J. Clin. Oncol. 1990; 8: 1913–1910
  • Borrow J., Goddard A. D., Sheer D., Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990; 249: 1577–1580
  • De ThÉ H., Chomienne C., Lanotte M., Degos L., Dejean A. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 1990; 347: 558–561
  • Longo L., Pandolfi P. P., Biondi A., Rambaldi A., Mencarelli A., Lo Coco F., Diverio D., Pegoraro L., Avanzi G., Tabilio A., Zangrilli D., Alcalay M., Donti E., Grignani F., Pelicci P. G. Rearrangements and aberrant expression of the RARa gene in acute promyelocytic leukemias. J. Exp. Med. 1990; 172: 1571–1575
  • Alcalay M., Zangrilli D., Pandolfi P. P., Longo L., Mencarelli A., Giacomucci A., Rocchi M., Biondi A., Rambaldi A., Lo Coco F., Diverio D., Donti E., Grignani F., Pelicci P. G. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc. Natl. Acad. Sci. USA 1991; 172: 1977–1981
  • Pandolfi P. P., Grignani F., Alcalay M., Mencarelli A., Biondi A., Lo Coco F., Pelicci P. G. Structure and origin of the acute promyelocytic leukemia myl/RARα cDNA and characterization of its retinoid-binding and trans-activation properties. Oncogene 1991; 6: 1285–1292
  • De ThÉ H., Lavau C., Marchio A., Chomienne C., Degos L., Dejean A. The PML/RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell 1991; 66: 675–684
  • Kakizuka A., Miller W. H., Jr., Umesono K., Warrell R. P., Jr., Frankel S. R., Murty V. V. V. S., Dmitrovsky E., Evans R. M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 1991; 66: 663–674
  • Grignani F., Fagioli M., Alcalay M., Longo L., Pandolfi P. P., Donti E., Biondi A., Lo Coco F., Pelicci P. G. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994; 83: 10–25
  • Huang M. E., Yu-Chen Y., Shu-Rong C., Chai J., Lin Z., Long J., Wang Z. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–560
  • Degos L., Chomienne C., Daniel M. T., Berger R., Dombret H., Fenaux P., Castaigne S. Treatment of first relapse in acute promyelocytic leukemia with all-trans retinoic acid. Lancet 1990; 336: 1440–1441
  • Warrell R. P., Jr., De ThÉ H., Wang Z. Y., Degos L. Acute promyelocytic leukemia. N. Engl. J. Med. 1993; 329: 177–189
  • Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schutz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., et al. The nuclear receptor super-family: the second decade. Cell 1995; 83: 835–9
  • Wang Z. G., Delva L., Gaboli M., Zhang H., Rivi R., Cordon-Cardo C., Grosveld F., Pandolfi P. P. Targeted disruption of the PML gene results in tumor susceptibility. 1997, Submitted).
  • Pandolfi P. P., Alcalay M., Fagioli M., Zangrilli D., Mencarelli A., Diverio D., Biondi A., Lo Coco F., Rambaldi A., Grignani F., Rochette-Egly C., Gaub M.-P., Chambon P., Pelicci P. G. Genomic variability and alternative splicings generate multiple PML/RARα transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukemias. EMBO J. 1992; 11: 1397–1407
  • Stadler M., Chelbi-Alix M. K., Koken M. H., Venturini L., Lee C., Saib A., Quignon F., Pelicano L., Guillemin M. C., Schindler C., et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995; 11: 2565–73
  • Lavau C., Marchio A., Fagioli M., Jansen J., Falini B., Lebon P., Grosveld F., Pandolfi P. P., Pelicci P. G., Dejean A. The PML gene is a primary target for interferon. Oncogene 1995; 11: 871–876
  • Chelbi-Alix M. K., Pelicano L., Quignon F., Koken M. H., Venturini L., Stadler M., Pavlovic J., Degos L., De ThÉ H. Induction of the PML protein by interferons in normal and APL cells. Leukemia 1995; 9: 2027–33
  • Nason-Burchenal K., Gandini D., Botto M., Allopenna J., Seale J. R. C., Cross N. C. P., Goldman J. M., Dmitrovsky E., Pandolfi P. P. Interferon augments PML and PML/RARa expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans-retinoic acid to induce maturation of a retinoid resistant promyelocytic cell line. Blood 1996; 889: 3926–3936
  • Kumar R., Korutla L. Growth inhibition of human acute promyelocytic leukemia NB-4 cells by interferons and all-trans retinoic acid: trans-modulation of inducible gene expression pathways. Anticancer Res. 1995; 15: 353–60
  • Matikainen S., Ronni T., Lehtonen A., Sareneva T., Melen K., Nordling S., Levy D. E., Julkunen I. Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons. Cell. Growth Differ. 1997; 8: 687–98
  • Trinchieri G., Rosen M., Perussia B. Retinoic acid cooperates with tumor necrosis factor and immune interferon in inducing differentiation and growth inhibition of the human promyelocytic leukemic cell line HL-60. Blood 1987; 69: 1218–24
  • Hemmi H., Breitman T. R. Combinations of recombinant human interferons and retinoic acid synergistically induce differentiation of the human promyelocytic leukemia cell line HL-60. Blood 1987; 69: 501–7
  • Ho C. K. Synergistic anticellular effect of a combination of beta-interferon and retinoic acid against U937 cells. Cancer Res. 1985; 45: 5348–51
  • Kohlhepp E. A., Condon M. E., Hamburger A. W. Recombinant human interferon alpha enhancement of retinoic-acid-induced differentiation of HL-60 cells. Exp. Hematol 1987; 15: 414–8
  • Matikainen S., Ronni T., Hurme M., Pine R., Julkunen I. Retinoic acid activates interferon regulatory factor-1 gene expression in myeloid cells. Blood 1996; 88: 114–23
  • Gianni M., Terao M., Fortino I., Licalzi M., Viggiano V., Barbui T., Rambaldi A., Garattini E. Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 1997; 89: 1001–12
  • Liu M., Iavarone A., Freedman L. P. Transcriptional activation of the human p21 (WAF1/CIP1) gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation. J. Biol. Chem. 1996; 271: 31723–8
  • Chin Y. E., Kitagawa M., Su W. C., You Z. H., Iwamoto Y., Fu X. Y. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 1996; 272: 719–22
  • Landolfo S., Gribaudo G., Angeretti A., Gariglio M. Mechanisms of viral inhibition by interferons. Pharmacol. Ther. 1995; 65: 415–42
  • David M. Transcription factors in interferon signaling. Pharmacol. Ther. 1995; 65: 149–61
  • Staeheli P. Interferon-induced proteins and the antiviral state. Adv. Virus Res. 1990; 38: 147–200
  • Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc. Natl. Acad. Sci. USA 1993; 90: 5893–5
  • Gutterman J. U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl. Acad. Sci. 1994; 91: 1198–205, USA
  • Sen G. C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J. Biol. Chem. 1992; 267: 5017–20
  • Darnell J. E., Jr., Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–21
  • Schindler C., Darnell J. E., Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 1995; 64: 621–51
  • Ihle J. N. STATs: signal transducers and activators of transcription. Cell 1996; 84: 331–4
  • Dile J. N., Witthuhn B. A., Quelle F. W., Yamamoto K., Thierfelder W. E., Kreider B., Silvennoinen O. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem. Sci. 1994; 19: 222–7
  • Ziemiecki A., Harpur A. G., Wilks A. F. JAK protein tyrosine kinase: their role in cytokine signalling. Trends in Cell Biol. 1994; 4: 207–212
  • Lew D. J., Decker T., Strehlow I., Darnell J. E. Overlapping elements in the guanylate-binding protein gene promoter mediate transcríptional induction by alpha and gamma interferons. Mol. Cell. Biol 1991; 11: 182–91
  • Chambon P. The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 1994; 5: 115–25
  • Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–50
  • Leid M., Kastner P., Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 1992; 17: 427–33
  • Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996; 10: 940–54
  • Glass C. K., Rose D. W., Rosenfeld M. G. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 1997; 9: 222–32
  • De ThÉ H., Marchio A., Tiollais P., Dejean A. Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EMBO J 1989; 8: 429–433
  • Collins S. J., Robertson K., Mueller L. Retinoic acid induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-α). Mol. Cell. Biol. 1990; 10: 2154–2163
  • Chomienne C., Balitrand N., Ballerini P., Castaigne S., De ThÉ H., Degos L. All-trans retinoic acid modulates the retinoic acid receptor-alpha in promyelocytic cells. J. Clin. Invest. 1991; 88: 2150–4
  • Robertson K. A., Emami B., Mueller L., Collins S. J. Multiple members of the retinoic acid receptor family are capable of mediating the granulocytic differentiation of HL-60 cells. Mol. Cell. Biol. 1992; 12: 3743–3749
  • Tsai S., Bartelmez S., Heyman R., Damm K., Evans R. M., Collins S. J. A mutated retinoic acid receptor-α exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line. Genes Dev. 1992; 6: 2258–2269
  • Vasios G. W., Gold J. D., Petkovich M., Chambon P., Gudas L. J. A retinoic acid-responsive element is present in the 5′ flanking region of the laminin B1 gene. Proc. Natl. Acad. Sci. USA 1989; 86: 9099–103
  • Smith M. A., Parkinson D. R., Cheson B. D., Friedman M. A. Retinoids in cancer therapy. J. Clin. Oncol 1992; 10: 839–864
  • Gudas L. J. Retinoids and vertebrate development. J. Biol. Chem. 1994; 269: 15399–402
  • FroeschlÉ A., Camac G., Alric S., Montarras D., Pinset C., Rochette-Egly C., Bonnieu A. RXR alpha is essential for mediating the all-trans retinoic acid-induced growth arrest of C2 myogenic cells. Oncogene 1996; 12: 411–21
  • Pomponi F., Cariati R., Zancai P., De Paoli P., Rizzo S., Tedeschi R. M., Pivetta B., De Vita S., Boiocchi M., Dolcetti R. Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes. Blood 1996; 88: 3147–59
  • Ahn M. J., Nason-Burchenal K., Moasser M., Dmitrovsky E. Growth suppression of acute promyelocytic leukemia cells having increased expression of the non-rearranged alleles: RARα or PML. Oncogene 1995; 10: 2307–2300
  • Schule R., Rangarajan P., Yang N., Kliewer S., Ransone L. J., Bolado J., Verma I. M., Evans R. M. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl. Acad. Sci. USA 1991; 88: 6092–6
  • Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K., Rosenfeld M. G. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–14
  • Lippman S. M., Glisson B. S., Kavanagh J. J., Lotan R., Hong W. K., Paredes-Espinoza M., Hittelman W. N., Holdener E. E., Krakoff I. H. Retinoic acid and interferon combination studies in human cancer. Eur. J. Cancer. 1993; 29A, Suppl 5, S9–13.
  • Moore D. M., Kalvakolanu D. V., Lippman S. M., Kavanagh J. J., Hong W. K., Borden E. C., Paredes-Espinoza M., Krakoff I. H. Retinoic acid and interferon in human cancer: mechanistic and clinical studies. Semin. Hematol. 1994; 31: 31–7
  • Lippman S. M., Lotan R., Schleuniger U. Retinoid-interferon therapy of solid tumors. Int. J. Cancer 1997; 70: 481–3
  • Lancillotti F., Giandomenico V., Affabris E., Fiorucci G., Romeo G., Rossi G. B. Interferon alpha-2b and retinoic acid combined treatment affects proliferation and gene expression of human cervical carcinoma cells. Cancer Res. 1995; 55: 3158–64
  • Giandomenico V., Lancillotti F., Fiorucci G., Percario Z. A., Rivabene R., Malorni W., Affabris E., Romeo G. Retinoic acid and IFN inhibition of cell proliferation is associated with apoptosis in squamous carcinoma cell lines: role of IRF-1 and TGase II-dependent pathways. Cell Growth Differ. 1997; 8: 91–100
  • Weihua X., Kolla V., Kalvakolanu D. V. Modulation of interferon action by retinoids. Induction of murine STAT1 gene expression by retinoic acid. J. Biol. Chem. 1997; 272: 9742–8
  • Kolla V., Lindner D. J., Xiao W., Borden E. C., Kalvakolanu D. V. Modulation of interferon (IFN)-inducible gene expression by retinoic acid. Up-regulation of STAT1 protein in IFN-unresponsive cells. J. Biol. Chem. 1996; 271: 10508–14
  • Harada H., Fujita T., Miyamoto M., Kimura Y., Maruyama M., Furia A., Miyata T., Taniguchi T. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 1989; 58: 729–39
  • Matsuyama T., Kimura T., Kitagawa M., Pfeffer K., Kawakami T., Watanabe N., Kundig T. M., Amakawa R., Kishihara K., Wakeham A., et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993; 75: 83–97
  • Tanaka N., Ishihara M., Kitagawa M., Harada H., Kimura T., Matsuyama T., Lamphier M. S., Aizawa S., Mak T. W., Taniguchi T. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994; 77: 829–39
  • Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–4
  • Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interaeting proteinCip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–16
  • Gu Y., Turck C. W., Morgan D. O. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 1993; 366: 707–10
  • El-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinder K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–25
  • Kano A., Watanabe Y., Takeda N., Aizawa S., Akaike T. Analysis of IFN-gamma-induced cell cycle arrest and cell death in hepatocytes. J. Biochem. (Tokyo) 1997; 121: 677–83
  • Hobeika A. C., Subramaniam P. S., Johnson H. M. IFNalpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene 1997; 14: 1165–70
  • Sangfelt O., Erickson S., Einhorn S., Grander D. Induction of Cip/Kip and Ink4 cyclin dependent kinase inhibitors by interferon-alpha in hematopoietic cell lines. Oncogene 1997; 14: 415–23
  • Subramaniam P. S., Johnson H. M. A role for the cyclin-dependent kinase inhibitor p21 in the Gl cell cycle arrest mediated by the type I interferons. J. Interferon Cytokine Res. 1997; 17: 11–5
  • Biggs J. R., Kudlow J. E., Kraft A. S. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells. J. Biol. Chem. 1996; 271: 901–6
  • Jiang H., Lin J., Su Z. Z., Collart F. R., Huberman E., Fisher P. B. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 1994; 9: 3397–406
  • Steinman R. A., Hoffman B., Iro A., Guillouf C., Liebermann D. A., El-Houseini M. E. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene 1994; 9: 3389–96
  • Scale J. R. C., Varma S., Swirsky D., Pandolfi P. P., Goldman J. M., Cross N. C. P. Quantification of PML-RARα transcripts in acute promyelocytic leukaemia: explanation for the lack of sensitivity of RT-PCR for the detection of minimal residual disease and induction of the leukaemia specific mRNA by alpha interferon. Br. J. Haematol. 1996; 95: 95–101
  • Peruzzi D., Deblasio T., Warrell R. P. J., Pandolfi P. P. Highly sensitive RT-PCR assay for detection of minimal residual disease in acute promyelocytic leukemia. Blood 1996; 88: 366a
  • Bouteille M., Laval M., Dupuy-Coin A. M. In The Cell Nucleus, H. Busch. Academic Press, New York 1974; 5–64
  • Ascoli C., Maul G. J. Identification of a novel nuclear domain. J. Cell. Biol. 1991; 112: 785–795
  • Koken M. H. M., Puvion-Dutilleui F., Guillemin M. C., Viron A., Linares-Cruz G., Stuurman N., De Jong L., Szostecki C., Calvo F., Chomienne C., Degos L., Puvion E., De ThÉ H. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994; 13: 1073–1083
  • Dyck J., Maul G. G., Miller W. H., Jr., Chen J. D., Kakizuka A., Evans R. M. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76: 333–343
  • Weis K., Rambaud S., Lavau C., Jansen J., Carvalho T., Carmo-Fonseca M., Lamond A., Dejean A. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76: 345–56
  • Kastner P., Perez A., Lutz Y., Rochette-Egly C., Gaub M. P., Durand B., Lanotte M., Berger R., Chambon P. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 1992; 11: 629–642
  • Raelson J. V., Nervi C., Rosenauer A., Benedetti L., Monczak Y., Pearson M., Pelicci P. G., Miller W. H., Jr. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996; 88: 2826–32
  • Yoshida H., Kitamura K., Tanaka K., Omura S., Miyazaki T., Hachiya T., Ohno R., Naoe T. Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996; 56: 2945–8
  • Lanotte M., Martin-Thouvenin V., Najman S., Ballerini P., Valensi F., Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086
  • Gianni M., Zanotta S., Terao M., Rambaldi A., Garattini E. Interferons induce normal and aberrant retinoic-acid receptors type alpha in acute promyelocytic leukemia cells: potentiation of the induction of retinoid-dependent differentiation markers. Int. J. Cancer 1996; 68: 75–83
  • Fenaux P., Chomienne C., Degos L. Acute promyelocytic leukemia: biology and treatment. Semin. Oncol 1997; 24: 92–102
  • Lazzarino M., Regazzi M. B., Corso A. Clinical relevance of all-trans retinoic acid pharmacokinetics and its modulation in acute promyelocytic leukemia. Leuk. Lymphoma 1996; 23: 539–43
  • Duprez E., Ruchaud S., Houge G., Martin-Thouvenin V., Valensi F., Kastner P., Berger R., Lanotte M. A retinoid acid ‘resistant’ t(15;17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 1992; 6: 1281–7
  • Dermime S., Grignani F., Clerici M., Nervi C., Sozzi G., Talamo G. P., Marchesi E., Formelli F., Parmiani G., Pelicci P. G., et al. Occurrence of resistance to retinoic acid in the acute promyelocytic leukemia cell line NB4 is associated with altered expression of the pm1/RAR alpha protein. Blood 1993; 82: 1573–7
  • Rosenauer A., Raelson J. V., Nervi C., Eydoux P., Deblasio A., Miller W. H., Jr. Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines. Blood 1996; 88: 2671–82
  • Kizaki M., Matsushita H., Takayama N., Muto A., Ueno H., Awaya N., Kawai Y., Asou H., Kamada N., Ikeda Y. Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features. Blood 1996; 88: 1824–33
  • Shao W., Benedetti L., Lamph W. W., Nervi C., Miller W. H., Jr. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RAR alpha mutation. Blood 1997; 89: 4282–9
  • Koller E., Krieger O., Kasparu H., Lutz D. Restoration of all-trans retinoic acid sensitivity by interferon in acute promyelocytic leukaemia [letter] [see comments]. Lancet 1991; 338: 1154–5
  • Lazzarino M., Corso A., Regazzi M. B., Iacona I., Bemasconi C. Modulation of all-trans retinoid acid pharmacokinetics in acute promyelocytic leukaemia by prolonged interferon-alpha therapy. Br. J. Haematol. 1995; 90: 928–30
  • Mu Z.-M., Chin K.-V., Liu J.-H., Lozano G., Chang K.-S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell. Biol. 1994; 14: 6858–6867
  • Koken M. H. M., Linares-Cruz G., Quignon F., Viron A., Chelbi-Alix M. K., Sobczak-Thepot J., Juhlin L., Degos L., Calvo F., De ThÉ H. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 1995; 10: 1315–1324
  • Zheng A., Savolainen E. R., Koistinen P. All-trans retinoic acid combined with interferon-alpha effectively inhibits granulocyte-macrophage colony formation in chronic myeloid leukemia. Leuk. Res. 1996; 20: 243–8
  • Ferrero D., Carlesso N., Bresso P., Roux V., Pregno P., Gallo E., Pileri A. Suppression of in vitro maintenance of non-promyelocytic myeloid leukemia clonogenic cells by all-trans retinoic acid: modulating effects of dihy-droxylated vitamin D3, alpha interferon and 'stem cell factor'. Leuk. Res. 1997; 21: 51–8
  • Mahon F. X., Chahine H., Barbot C., Pigeonnier V., Jazwiec B., Reiffers J., Ripoche J. All-trans retinoic acid potentiates the inhibitory effects of interferon alpha on chronic myeloid leukemia progenitors in vitro. Leukemia 1997; 11: 667–73
  • Wadler S., Schwartz E. L., Haynes H., Rameau R., Quish A., Mandeli J., Gallagher R., Hallam S., Fields A., Goldberg G., McGill F., Jennings S., Wallach R. C., Runowicz C. D. All-trans retinoic acid and interferon-alpha-2a in patients with metastatic or recurrent carcinoma of the uterine cervix: clinical and pharmacokinetic studies. New York Gynecologic Oncology Group. Cancer 1997; 79: 1574–80
  • Bonnefoix T., Gressin R., Jacrot M., Perron P., Swiercz P., Chaffanjon P., Sotto J. J. Growth modulation of freshly isolated non-Hodgkin's B-lymphoma cells induced by various cytokines and all-trans-retinoic-acid. Leuk. Lymphoma 1997; 25: 169–78
  • Massad L. S., Turyk M. E., Bitterman P., Wilbanks G. D. Interferon-alpha and all-trans-retinoic acid reversibly inhibit the in vitro proliferation of cell lines derived from cervical cancers. Gynecol. Oncol. 1996; 60: 428–34
  • Widschwendter M., Daxenbichler G., Culig Z., Michel S., Zeimet A. G., Mortl M. G., Widschwendter A., Marth C. Activity of retinoic acid receptor-gamma selectively binding retinoids alone and in combination with interferon-gamma in breast cancer cell lines. Int. J. Cancer 1997; 71: 497–504
  • Avvisati G., Lo Coco F., Diverio D., Falda M., Ferrara F., Lazzarino M., Russo D., Petti M. C., Mandelli F. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) pilot study. Blood 1996; 88: 1390–8
  • He L. Z., Tribioli C., Rivi R., Peruzzi D., Pelicci P. G., Soares V., Cattoretti G., Pandolfi P. P. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proc. Natl. Acad. Sci. USA 1997; 94: 5302–5307
  • Brown D., Kogan S., Lagasse E., Weissman I., Alcalay M., Pelicci P. G., Atwater S., Bishop J. M. A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997; 94: 2551–2556
  • Grisolano J. L., Wesselschmidt R. L., Pelicci P. G., Ley T. J. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARα under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387
  • Licht J. D., Chomienne C., Goy A., Chen A., Scott A., Head D. R., Michaux J. L., Wu Y., Deblasio A., Miller W. H., Jr., Zelenetz A. D., Willman C. L., Chen Z., Chen S.-J., Zelent A., Macintyre E., Veil A., Cortes J., Kantarjian H., Waxman S. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995; 85: 1083–1094
  • Zelent A. Translocation of the RARa locus to the PML or PLZF gene in acute promyelocytic leukaemia. Br. J. Haematol. 1994; 86: 451–450
  • Pandolfi P. P. PML, PLZF and NPM in the pathogenesis of Acute Promyelocytic Leukemia. Haematologica 1996; 81: 472–482

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.