178
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Regulation of IRF and STAT Gene Expression by Retinoic Acid

, , &
Pages 63-71 | Received 01 Aug 1997, Published online: 01 Jul 2009

References

  • Lotan R. Retinoids in cancer chemoprevention. FASEB J. 1996; 10.: 1031–1039
  • Borden E. C. Interferons-expanding therapeutic roles. N. Engl. J. Med. 1992; 326: 1491–1493
  • Cirelli R., Tyring S. Major therapeutic uses of interferons. Clin. Immunother. 1995; 3: 27–87
  • Eisenhauer E. A., Lippman S. M., Cavanagh J. J., Parades-Espinoza M., Arnold A., Hong W. K., Massimini G., Schleuniger U., Bollag W., Holdener E. E., Krakoff I. Combination of 13-cis-retinoic acid and interferon α-2a in therapy of solid tumors. Leukemia 1993; 8: 1622–1625
  • Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996; 10: 940–954
  • De The H. Altered retinoic acid receptors. FASEB J. 1996; 10: 955–960
  • Chomienne C., Fenaux P., Degos L. Retinoid differentiation therapy in promyelocytic leukemia. FASEB J. 1996; 10: 1025–1030
  • Grignani F., Fermcci P. F., Testa U., Talamo G., Fagioli M., Alcalay M., Mencarelli A., Grignani F., Peschle C., Nicoletti I., Pelicci P. G. The acute promyelocytic-specific PML-RARa fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431
  • Rousselot P., Hardas B., Patel A., Guidez F., Giken J., Castaigne S., Dejean A., De The H., Degos L., Farzaneh F., Chomienne C. The PML-RARa gene product of the t(15.17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 1994; 9: 545–551
  • Lanotte M., Martin-Thouvenin V., Najman S., Balerini P., Valensi F., Berger R. NB4, a maturation inducible cell line with t(15; 17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086
  • Huang M., Ye Y. C., Chen B. R., Chai J. R., Lu J. X., Zhoa L., Gu L. J., Wang Z. Y. Use of all-trans-retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572
  • Castaigne S., Chomienne C., Daniel M. T., Ballerini P., Berger R., Fenaux P., Degos L. All-trans-retinoic acid as a differentiation theraphy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709
  • Warrell R. P., Frankel S. R., Miller W. H., Scheinberg D. A., Itri L. M., Hittelman M. N., Vyas R., Andreeff M., Tafuri A., Jakubowski A., Gabrilove J., Gordon M. S. Differentiation therapy for acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med. 1991; 324: 1385–1393
  • Harada H., Fujita T., Miyamoto M., Kimura Y., Maruyama M., Furia A., Miyata T., Taniguchi T. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN inducible genes. Cell 1989; 58: 729–739
  • Pine R., Decker T., Kessler D. S., Levy D. E., Darnell J. E., Jr. Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta-interferon and interferon-stimulated genes but is not a primary transcriptional activator of either. Mol. Cell. Biol. 1990; 10: 248–2457
  • Maruyama M., Fujita T., Taniguchi T. Sequence of a cDNA coding for human IRF-I. Nucleic Acids Res. 1989; 17: 3292
  • Itoh S., Harada H., Fujita T., Mimura T., Taniguchi T. Sequence of a cDNA coding for human IRF-2. Nucleic Acids Res. 1989; 17: 8372
  • Au W-C., Moore P. A., Lowther W., Juang Y-T, Pitha P. M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl. Acad. Sci. 1995; 92: 11657–11661
  • Yamagata T., Nishida J., Tanaka T., Sakai R., Mitani K., Yoshida M., Taniguchi T., Yazaki Y., Hirai H. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes. Mol. Cell. Biol. 1996; 16: 1283–1294
  • Veals S. A., Schindler C., Leonard D., Fu X-Y., Aebersold R., Darnell J. E., Jr., Levy D. E. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and myb families of DNA-binding proteins. Mol. Cell. Biol. 1992; 12: 3315–3324
  • Weiz A., Marx P., Sharf R., Appella E., Driggers P. H., Ozato K., Levi B-Z. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. J. Biol. Chem. 1992; 267: 25589–25596
  • Driggers P. H., Elenbaas B. A., An J.-B., Lee I. J., Ozato K. Two upstream elements activate transcription of major histocompability complex class I gene in vitro. Nucleic Acids Res. 1992; 20: 2533–2540
  • Matsuyama T., Grossman A., Mittrucker H. W., Siderovski D. P., Kiefer F., Kawakami T., Richardson C. D., Taniguehi T., Yoshinaga S. K., Mak T. W. Molecular cloning of LSIRF, a lymphoid-specific member of the inteferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 1995; 23: 2127–2136
  • Eisenbeis C. F., Singh H., Storb U. Pip, a novel IRF family member, is a lymphoid-specific, PU. 1-dependent transcriptional activator. Genes Dev. 1995; 9: 1377–1387
  • Mittrucker H-W., Matsuyama T., Grossman A., Kundig T. M., Potter J., Shahinian A., Wakeham A., Patterson B., Ohashi P. S., Mak T. W. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 1997; 275: 540–543
  • Bluyssen H. A. R., Durbin J. E., Levy D. E. ISGF3γ p48, a specificity switch for interferon activated transcription factors. Cytokine and Growth Factor Reviews 1996; 7: 11–17
  • Tanaka N., Kawakami T., Taniguehi T. Recognition DNA sequences of inteferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol. 1993; 13: 4531–4538
  • Kimura T., Kadokawa Y., Harada H., Matsumoto M., Sato M., Kashiwazaki Y., Tarutani M., Sok-Pin Tan R., Takasugi T., Matsuyama T., Mak T. W., Noguchi S., Taniguehi T. Essential and non-redundant roles of p48 (ISGF3y) and IRF-1 in both type I and type II inteferon responses, as revealed by gene targeting studies. Genes to Cells 1996; 1: 115–124
  • Bovolenta C., Driggers P. H., Marks M. S., Medin J. A., Poltis A. D., Vogel S. N., Levy D. E., Sakaguchi K., Appella E., Coligan I. E., Ozato K. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl. Acad. Sci. 1994; 91: 5046–5050
  • Sharf R., Meraro D., Azriel A., Thornton A. M., Ozato K., Petricoin E. F., Schaper F., Hauser H., Levi B. Z. Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J. Biol. Chem. 1997; 272: 9785–9792
  • Taniguehi T., Harada H., Lamphier M. Regulation of the interferon system and cell growth by the IRF transcription factors. J Cancer Res. Clin. Oncol. 1995; 121: 516–520
  • Harada H., Kitagawa M., Tanaka N., Yamamoto H., Harada K., Ishihara M., Taniguehi T. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and-2. Science 1993; 259: 971–974
  • Tanaka N., Ishihara M., Kitagawa M., Harada H., Kimura T., Matsuyama T., Lamphier M. S., Aizawa S., Mak T. W., Taniguehi T. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1993; 77: 829–839
  • Tamura T., Ishihara M., Lamphier M. S., Tanaka N., Oishi I., Aizawa S., Matsuyama T., Mak T. W., Taki S., Taniguehi T. An IRF-1 dependent pathway of DNA-damage induced apoptosis in mitogen activated T-lymphocytes. Nature 1995; 376: 596–599
  • Willman C. L., Sever C. E., Pallavicini M. G., Harada H., Tanaka N., Slovak M. L., Yamamoto H., Harada K., Meeker T. C., List A. F., Taniguehi T. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993; 259: 968–971
  • Holtschke T., LÖHler J., Kanno Y., Fehr T., Giese N., Rosenbauer F., Lou J., Knobeloch K-P., Gabriele L., Waring J. F., Bachmann M. F., Zinkernagel R. M., Morse H. C., III, Ozato K., Horak I. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317
  • Matikainen S., Ronni T., Hurme M., Pine R., Julkunen I. Retinoic acid activates interferon regulatory factor-1 gene expression in myeloid cells. Blood 1996; 88: 114–123
  • Gianni M., Terao M., Fortino I., Licalzi M., Viggiano V., Barbui T., Rambaldi A., Garattini E. Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 1997; 89: 1001–1012
  • Giandomenico V., Lancillotti F., Fioruggi G., Percario Z. A., Rivabene R., Malorni W., Affabris E., Romeo G. Retinoic acid and IFN inhibition of cell proliferation is associated with apoptosis in squamous carcinoma cell lines: role of IRF-1 and TGase II-dependent pathways. Cell Growth & Differ. 1997; 8: 91–100
  • Sims S. H., Cha Y., Romine M. F., Gao P.-Q., Gottlieb K., Deisseroth A. A novel interferon-inducible domain: structural and functional analysis of the human interferon regulatory factor 1 gene promoter. Mol. Cell. Biol. 1993; 13: 690–702
  • Pine R., Canova A., Schindler C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFNα and IFGγ, and is likely to autoregulate the p91 gene. EMBO J. 1994; 13: 158–167
  • Lehtonen A., Matikainen S., Julkunen I. Interferons upregulate STAT1, STAT2, and IRF family transcription factor gene expression in human peripheral blood mononuclear cells and macrophages. J. Immunol. 1997; 14: 794–803
  • Ohmori Y., Schreiber R. D., Hamilton T. A. Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J. Biol. Chem. 1997; 272: 14899–14907
  • Matikainen S., Ronni T., Lehtonen A., Sareneva T., Melen K., Nordlin S., Levy D. E., Julkunen I. Retinoic acid induces signal transducers and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons. Cell Growth & Differ. 1997; 8: 687–698
  • Kolla V., Lindner D. J., Weihua X., Borden E. C., Kalvakolanu D. J. Modulation of interferon (IFN)-inducible gene expression by retinoic acid. J. Biol. Chem. 1996; 271: 10508–10514
  • Xu B., Grander D., Sangfelt O., Einhorn S. Primary leukemia cells resistant to α-interferon in vitro are defective in the activation of the DNA-binding factor interferon-stimulated gene factor 3. Blood 1994; 84: 1942–1949
  • Watanabe N., Sakakibara J., Hovanessian A. G., Taniguehi T., Fujita T. Activation of IFN-β element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis. Nucleic Acids Res. 1991; 19: 4421–4428
  • Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365
  • Tanaka N., Ishihara M., Lamphier M. S., Nozawa H., Matsuyama T., Mak T. W., Aizawa S., Tokino T., Oren M., Taniguchi T. Cooperation of the tumor suppressors IRF-1 and p53 in response to DNA damage. Nature 1996; 382: 816–818
  • Kamijo R., Harada H., Matsuyama T., Bosland M., Gerecitano J., Shapiro D., Le J., Koh S. J., Kimura T., Green S. J., Mak T. W., Taniguchi T., Vilcek J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 1994; 263: 1612–1615
  • Moilanen E., Vapaatalo H. Nitric oxide in inflammation and immune response. Ann. Med. 1995; 27: 359–367
  • Albina J. E., Abate J. A., Henry W. L. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T-cell proliferation: a role of IFN-gamma in the induction of nitric oxide synthesizing pathway. J. Immunol. 1991; 147: 1441–1448
  • Mills C. D. Molecular basis of “suppressor” macrophages: arginine metabolism via the nitric oxide synthase pathway. J. Immunol. 1991; 146: 2719–2723

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.