35
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Stromal Cells and Cytokines in the Induction of Recombination Activating Gene (RAG) Expression in a Human Lymphoid Progenitor Cell

, , , &
Pages 73-85 | Received 20 Aug 1997, Published online: 01 Jul 2009

References

  • Tonegawa S. Somatic generation of antibody diversity. Nature 1983; 302: 575
  • Schatz D. G., Oettinger M. A., Schlissel M. S. V(D)J recombination; molecular biology and regulation. Ann. Rev. Immunol. 1992; 10: 359
  • Aguilera R. J., Akira S., Okazaki K., Sakano H. A pre-B-cell nuclear protein which specifically interacts with the immunoglobulin V-J recombination sequences. Cell 1987; 51: 909
  • Hesse J. E., Lieber M. R., Mizuuchi K., Gellert M. V(D)J recombination; a functional definition of the joining signals. Genes Dev. 1989; 3: 1053
  • Hamaguchi Y., Matsunami N., Yamamoto Y., Honjo T. Purification and characterization of a protein that binds to the recombination signal sequence of the immunoglobulin J kappa segment. Nucl. Acids Res. 1989; 17: 9015
  • Halligan B. D., Desiderio S. V. Identification of a DNA binding protein that recognizes the nonamer recombinational signal sequence of immunoglobulin genes. Proc. Natl. Acad. Sci. USA 1987; 84: 7019
  • Desiderio S., Baltimore D. Double-stranded cleavage by cell extracts near recombinational signal sequences of immunoglobulin genes. Nature 1984; 308: 860
  • Kataoka T., Kondo S., Nishi M., Kodaira M., Honjo T. Isolation and characterization of endonuclease J; a sequence-specific endonuclease cleaving immunoglobulin genes. Nucl. Acids Res. 1984; 12: 5995
  • Hope T. J., Aguilera R. J., Minie M. E., Sakano H. Endonucleolytic activity that cleaves immunoglobulin recombination sequences. Science 1986; 231: 1141
  • Schatz D. G., Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 1988; 53: 107
  • Schatz D. G., Oettinger M. A., Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989; 59: 1035
  • Oettinger M. A., Schatz D. G., Gorka C., Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248: 1517
  • Turka L. A., Schatz D. G., Oettinger M. A., Chun J. J. M., Gorka C., Lee K., McCormack W. T., Thompson C. B. Thymocyte expression of RAG-1 and RAG-2; termination by T-cell receptor cross-linking. Science 1991; 253: 778
  • Mombaerts P., Lacomini J., Johnson R. S., Herrup K., Tonegawa S., Papaioannou V. E. RAG-1-deficient mice have no mature B-and T-lymphocytes. Cell 1992; 68: 869
  • Shinkai Y., Koyasu S., Nakayama K., Murphy K. M., Loh D. Y., Reinherz E. L., Alt F. W. Restoration of T-cell development in RAG-2-deficient mice by functional TCR transgenes. Science 1993; 259: 822
  • Carlson L. M., Oettinger M. A., Schatz D. G., Masteller E. L., Hurley E. A., McCormack W. T., Baltimore D., Thompson C. B. Selective expression of RAG-2 in chicken B-cells undergoing immunoglobulin gene conversion. Cell 1991; 64: 201
  • Ichihara Y., Hirai M., Kurosawa Y. Sequence and chromosome assignment to 11p13-p12 of human RAG genes. Immunol. Lett. 1992; 33: 277
  • Kurioka H., Kishi H., Isshiki H., Tagoh H., Mori K., Kitagawa T., Nagata T., Dohi K., Muraguchi A. Isolation and characterization of a TATA-less promoter for the human RAG-1 gene. Mol. Immunol. 1996; 33: 1059
  • Smale S. T., Baltimore D. The ??14??initiator??14?? as a transcription control element. Cell 1989; 57: 103
  • Okabe T., Bauer S. R., Kudo A. Pre-B-lymphocyte-specific transcriptional control of the mouse VpreB gene. Eur. J. Immunol. 1992; 22: 31
  • Travis A., Hagman J., Grosschedl R. Heterogeneously initiated transcription from the pre-B-and B-cell-specifíc mb-1 promoter; analysis of requirement for upstream factor-binding sites and initiation site sequences. Mol. Cell. Biol 1991; 11: 5756
  • Ha H., Barnoski B. L., Sun L., Emmanuel B. S., Burrows P. D. Structure, chromosomal localization, and methylation pattern of the human mb-1 gene. J. Immunol. 1994; 152: 5749
  • Agura E. D., Howard M., Collins S. Identification and sequence analysis of the promoter for the leukocyte integrin β subunit (CD18); a retinoic acid-inducible gene. Blood 1992; 79: 602
  • Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Spl. Science 1986; 234: 47
  • Chodosh L. A., Baldwin A. S., Carthew R. W., Sharp P. A. Human CCAAT-binding proteins have heterologous subunits. Cell 1988; 53: 11
  • Georgopoulos K., Moore D. D., Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T-cell commitment. Science 1992; 258: 808
  • Church G. M., Ephrussi A., Gilbert W., Tonegawa S. Cell type-specific contacts to immunoglobulin enhancers in nuclei. Nature 1985; 313: 798
  • Lee W., Mitchell P., Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 1987; 49: 741
  • Akira S., Isshiki H., Sugita T., Tanabe O., Kinoshita S., Nishio Y., Nakajima T., Hirano T., Kishimoto T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990; 9: 1897
  • Lobanenkov V. V., Nicolas R. H., Adler V. V., Paterson H., Klenova A. V., Goodwin G. H. A novel sequence specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5-flanking sequence of the chicken c-myc gene. Oncogene 1990; 5: 1743
  • Brown S. T., Miranda G. A., Galic Z., Hartman I. Z., Lyon C. J., Aguilera J. Regulation of the RAG-1 promoter by NF-Y transcription factor. J. Immunol. 1997; 158: 5071
  • Wilson A., Held W., Macdonald H. R. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 1994; 179: 1355
  • Brandle D., Muller C., Rulicke T., Hengartner H., Pircher H. Engagement of the T-cell receptor during positive selection in the thymus down-regulates RAG-1 expression. Proc. Natl. Acad. Sci. USA 1992; 89: 9539
  • Borgulya P., Kishi H., Uematsu Y., Von Boehmer H. Exclusion and inclusion of α and β T-cell receptor alles. Cell 1992; 69: 529
  • Campbell J. J., Hashimoto Y. Recombinase activating gene expression in thymic subpopulations. J. Immunol. 1993; 150: 1307
  • Li Y.-S., Hayakawa K., Hardy R. R. The regulated expression of B lineage associated genes during B-cell differentiation in bone marrow and fetal liver. J. Exp. Med. 1993; 178: 951
  • Hikida M., Mori M., Takai T., Tomochika K., Hamatani K., Ohmori H. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B-cells. Science 1996; 274: 2092
  • Hikida M., Mori M., Kawabata T., Takai T., Ohmori H. Characterization of B-cells expressing recombination activating genes in germinal centers of immunized mouse lymph nodes. J. Immunol. 1997; 158: 2509
  • Han S., Zheng B., Schatz D. G., Spanopoulou E., Kelsoe G. Neoteny in lymphocytes; Rag1 and Rag2 expression in germinal center B-cells. Science 1996; 274: 2094
  • Chun J. J., Schatz D. G., Oettinger M. A., Jaenisch R., Baltimore D. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 1991; 64: 189
  • Menetski J. P., Gellert M. V(D)J recombination activity in lymphoid cell lines is increased by agents that elevate cAMP. Proc. Natl. Acad. Sci. USA 1990; 87: 9324
  • Neale G. A. M., Fitzgerald T. J., Goorha R. M. Expression of the V(D)J recombinase gene RAG-1 is tightly regulated and involves both transcriptional and post-transcriptional controls. Mol. Immunol. 1992; 29: 1457
  • Muegge K., Vila M. P., Durum S. K. Interleukin-7; a cofactor for V(D)J rearrangement of the T-cell receptor β gene. Science 1993; 261: 93
  • Appasamy P. M., Kenniston T. W., Weng Y., Holt E. C., Kost J., Chambers W. H. Interleukin 7-induced expression of specific T-cell receptor γ variable region genes in murine fetal liver cultures. J. Exp. Med. 1993; 178: 2201
  • Billips L. G., Nunez C. A., Bertrand F. E., III, Stankovic A. K., Gertland G. L., Burrows P. D., Cooper M. D. Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin 7 and CD19 in B-cell progenitors. J. Exp. Med. 1995; 182: 973
  • Rolink A., Grawunder U., Haasner D., Strasser A., Melchers F. Immature surface Ig+ B-cells can continue to rearrange κ and λ L chain gene Loci. J. Exp. Med. 1993; 178: 1263
  • Uckun F. M., Muraguchi A., Ledbetter J. A., Kishimoto T., O'Brien R., Roioff J. S., Gaji-Peczaiska K., Provisor A., Koller B. Biophenotypic leukemic lymphocyte precursors in CD2+ CD19+ acute lymphoblastic leukemia and their putative normal counterparts in human hematopoietic tissues. Blood 1989; 73: 1000
  • Muraguchi A., Kawamura N., Hori A., Horii Y., Ichigi Y., Kimoto M., Kishimoto T. Expression of the CD2 molecule on human B-lymphoid progenitors. Int. Immunol. 1992; 4: 841
  • Ichigi Y., Naitoh K., Tokushima M., Haraoka S., Tagoh H., Kimoto M., Muraguchi A. Generation of cells with morphological and antigenic properties of microglia from cloned EBV-transformed lymphoid progenitor cells derived from human fetal liver. Cell. Immunol. 1993; 149: 193
  • Musashi M., Yang Y.-C., Paul S. R., Clark S. C., Sudo T., Ogawa M. Direct and synergistic effects of interleukin 11 on murine hematopoiesis in culture. Pro. Natl. Acad. Sci. 1991; 88: 765
  • Ikebuchi K., Wong G. G., Clark S. C., Ihle J. N., Hirai Y., Ogawa M. Interleukin-6 enhancement of interleukin-3-dependent proliferation of multipotential hematopoietic progenitors. Proc. Natl. Acad. Sci. USA 1987; 84: 9035
  • Suda T., Suda J., Ogawa M., Ihle J. N. Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hematopoietic progenitors in culture. J Cell. Physiol. 1985; 124: 182
  • Hirayama F., Katayama N., Neben S., Donaldson D., Nickbarg E. B., Clark S. C., Ogawa M. Synergistic interaction between interleukin-12 and steel factor in support of proliferation of murine lymphohetnatopoietic progenitors in culture. Blood 1994; 83: 92
  • Namen A. E., Lupton S., Hjerrild K., Wignall J., Nochizuki D. Y., Schmierer A., Mosley B., March C. J., Urdal D., Gillis S. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 1988; 333: 571
  • Lee G., Namen A. E., Gillis S., Ellingsworth L. R., Kincade P. W. Normal B-cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-β. J. Immunol. 1989; 142: 3875
  • Wolf M. L., Buckley J. A., Goldfarb A., Law C. L., Lebien T. W. Development of a bone marrow culture for maintenance and growth of normal human B-cell precursors. J. Immunol. 1991; 147: 3324
  • Moreau I., Duvert V., Banchereau J., Saeland S. Culture of human fetal B-cell precursors on bone marrow stroma maintains highly proliferative CD20-dim cells. Blood 1993; 81: 1170
  • Tohma S., Lipsky P. E. Analysis of the mechanism of T-cell-dependent polyclonal activation of human B-cells: induction of human B-cell responses by fixed activated T-cells. J. Immunol. 1991; 146: 2544
  • Ryan D. H., Nuccie B. L., Abboud C. N., Wislow J. M. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B-cell precursors to cultured bone marrow adhesion cells. J. Clin. Invest. 1991; 88: 995
  • Dittel B. N., Maccarthy J. B., Wayner E. A., Lebien T. W. Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular cell adhesion molecule-1 (VCAM-1). Blood 1993; 81: 2272
  • Miyake K., Medina K. L., Hayashi S.-I., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J. Exp. Med. 1990; 171: 477
  • Yasunaga M., Wang F.-H., Kunisada T., Nishikawa S., Nishikawa S.-I. Cell cycle control of c-kit+ IL-7R+ precursor cells by two distinct signals derived from IL-7 receptor and c-kit in a fully defined medium. J. Exp. Med. 1995; 182: 315
  • Era T., Ogawa M., Nishikawa S., Okamoto M., Honjo T., Akagi K., Miyazaki J., Tamamura K. Differentiation of growth signal requirement of B-lymphocyte precursor is directed by expression of immunoglobulin. EMBO J. 1991; 10: 337
  • Era T., Nishikawa S., Sudo T., Wang F.-H., Ogawa M., Kunisada T., Hayashi S.-I., Nishikawa S.-I. How B-precursor cells are driven to cycle. Immunol. Rev. 1994; 137: 35
  • Isshiki H., Akira S., Tanabe O., Nakajima T., Shimamoto T., Hirano T., Kishimoto T. Constitutive and interleukin-1 (IL-1)-inducible factors interact with the IL-1-responsive element in the IL-6 gene. Mol. Cell. Biol. 1990; 10: 2757
  • Akira S., Isshiki H., Sugita T., Tanabe O., Kinoshita S., Nishio Y., Nakajima T., Hirano T., Kishimoto T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990; 9: 1897
  • Abe M., Hayashida K., Takayama K., Shiku H. V(D)J recombinase activity in primary and secondary murine lymphoid organs: assessment by a PCR assay with extrachro-mosomal plasmids. Int. Immunol. 1991; 3: 1025
  • McBlane J. F., Van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M., Oettinger M. A. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995; 83: 387
  • Van Gent D. C., McBlane J. F., Ramsden D. A., Sadofsky M. J., Hesse J. E., Gellert M. Initiation of V(D)J recombination in a cell-free system. Cell 1995; 81: 925
  • Van Gent D. C., Ramsden D. A., Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 1996; 85: 107
  • Kirchgessher C. V., Patil C. K., Evans J. W., Cuomo C. A., Fried L. M., Carter T., Oettinger M. A., Brown J. M. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 1995; 267: 1178
  • Blunt T., Finnie N. J., Taccioli G. E., Smith G. C. M., Demengeot J., Gottlieb T. M., Mizuta R., Varghese A. J., Alt F. W., Feggo P. A., Jackson S. P. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995; 80: 813
  • Alt F. W., Oltz E. M., Young F., Gorman J., Taccioli G., Chen J. VDJ recombination. Immunol. Today 1992; 13: 306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.