265
Views
65
CrossRef citations to date
0
Altmetric
Original Article

Stat3 and G-CSF-Induced Myeloid Differentiation

&
Pages 433-442 | Received 02 Dec 1997, Published online: 01 Jul 2009

References

  • Valtieri M., Tweardy D.J., Caracciolo D., Johnson K., Mavilio F., Altmann S., Santoli D., Rovera G. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. Journal of Immunology 1987; 138: 3829–3835
  • Sonoda Y., Yang Y.C., Wong G.G., Clark S.C., Ogawa M. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: inter-leukin 3 and granulocyte/macrophage-colony-stimulating factor are specific for early developmental stages. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 4360–4364
  • Lieschke G.J., Grail D., Hodgson G., Metcalf D., Stanley E., Cheers C., Fowler K.J., Basu S., Zhan Y.F., Dunn A.R. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 1994; 84: 1737–1746
  • Liu M., Wu H., Wesseelschmidt R., Kornaga T., Link D. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996; 5: 491–501
  • Lieschke G.J., Ramenghi U., O'Connor M.P., Sheridan W., Szer J., Morstyn G. Studies of oral neutrophil levels in patients receiving G-CSF after autologous marrow transplantation. British Journal of Haematology 1992; 82: 589–595
  • Lieschke G.J., Burgess A.W. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1). [Review]. New England Journal of Medicine 1992; 327: 28–35
  • Sachs L. Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy. Proceedings of the National Academy of Sciences of the United States of America 1980; 77: 6152–6156
  • Nicola N.A., Begley C.G., Metcalf D. Identification of the human analogue of a regulator that induces differentiation in murine leukaemic cells. Nature 1985; 314: 625–628
  • Souza L.M., Boone T.C., Gabrilove J., Lai P.H., Zsebo K.M., Murdock D.C., Chazin V.R., Bruszewski J., Lu H., Chen K.K., et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–65
  • Begley C.G. Haemopoietic growth factors-from discovery to clinical application. [Review]. Medical Journal of Malaysia 1993; 48: 3–8
  • Park L.S., Friend D., Price V., Anderson D., Singer J., Prickett K.S., Urdal D.L. Heterogeneity in human interleukin-3 receptors. A subclass that binds human granulocyte/macrophage colony stimulating factor. Journal of Biological Chemistry 1989; 264: 5420–5427
  • Fukunaga R., Seto Y., Mizushima S., Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 8702–8706
  • Larsen A., Davis T., Curtis B.M., Gimpel S., Sims J.E., Cosman D., Park L., Sorensen E., March C.J., Smith C.A. Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains. Journal of Experimental Medicine 1990; 172: 1559–1570
  • Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. [Review]. Science 1995; 268: 251–255
  • Fukunaga R., Ishizaka-Ikeda E., Pan C.X., Seto Y., Nagata S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO Journal 1991; 10: 2855–2865
  • Dong F., van B.C., Pouwels K., Hoefsloot L.H., Löwenberg B., Touw I.P. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Molecular & Cellular Biology 1993; 13: 7774–7781
  • Schindler C., Darnell J.E., Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. [Review]. Annual Review of Biochemistry 1995; 64: 621–651
  • Akira S., Nishio Y., Inoue M., Wang X.J., Wei S., Matsusaka T., Yoshida K., Sudo T., Naruto M., Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 1994; 11: 63–71
  • Chakraborty A., White S.M., Schaefer T.S., Ball E.D., Dyer K.F., Tweardy D.J. Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood 1996; 88: 2442–2449
  • Schaefer T.S., Sanders L.K., Nathans D. Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 9097–9101
  • Caldenhoven E., Vandijk T.B., Solari R., Armstrong J., Raaijmakers J.A.M., Lammers J.W.J., Koenderman L., Degroot R.P. Stat3-Beta, a Splice Variant Of Transcription Factor Stat3, Is a Dominant Negative Regulator Of Transcription. Journal of Biological Chemistry 1996; 271: 13221–13227
  • Nakajima K., Yamanaka Y., Nakae K., Kojima H., Ichiba M., Kiuchi N., Kitaoka T., Fukada T., Hibi M., Hirano T. A central role for Stat3 in II-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO Journal 1996; 15: 3651–3658
  • Nicholson S.E., Novak U., Ziegler S.F., Layton J.E. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood 1995; 86: 3698–3704
  • Tweardy D.J., Wright T.M., Ziegler S.F., Baumann H., Chakraborty A., White S.M., Dyer K.F., Rubin K.A. Granulocyte colony-stimulating factor rapidly activates a distinct STAT-like protein in normal myeloid cells. Blood 1995; 86: 4409–4416
  • Darnell J.E., Jr, Kerr I.M., Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. [Review]. Science 1994; 264: 1415–1421
  • Greenlund A.C., Farrar M.A., Viviano B.L., Schreiber R.D. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO Journal 1994; 13: 1591–1600
  • Stahl N., Farruggella T.J., Boulton T.G., Zhong Z., Darnell J.E., Jr, Yancopoulos G.D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 1995; 267: 1349–1353
  • Gupta S., Yan H., Wong L.H., Ralph S., Krolewski J., Schindler C. The Sh2 domains of Stat1 and Stat2 mediate multiple interactions in the transduction of ifn-alpha signals. EMBO Journal 1996; 15: 1075–1084
  • Hemmann U., Gerhartz C., Heesel B., Sasse J., Kurapkat G., Grotzinger J., Wollmer A., Zhong Z., Darnell J.E., Jr, Graeve L., Heinrich P.C., Horn F. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. Journal of Biological Chemistry 1996; 271: 12999–3007
  • Gerhartz C., Heesel B., Sasse J., Hemmann U., Landgraf C., Schneider-Mergener J., Horn F., Heinrich P.C., Graeve L. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signaltransducer gp130.I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. Journal of Biological Chemistry 1996; 271: 12991–12998
  • Songyang Z., Shoelson S.E., McGlade J., Olivier P., Pawson T., Bustelo X.R., Barbacid M., Sabe H., Hanafusa H., Yi T., et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Molecular & Cellular Biology 1994; 14: 2777–2785
  • Weber-Nordt R.M., Riley J.K., Greenlund A.C., Moore K.W., Darnell J.E., Schreiber R.D. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. Journal of Biological Chemistry 1996; 271: 27954–2761
  • Baumann H., Symes A.J., Comeau M.R., Morella K.K., Wang Y., Friend D., Ziegler S.F., Fink J.S., Gearing D.P. Multiple regions within the cytoplasmic domains of the leukemia inhibitory factor receptor and gp 130 cooperate in signal transduction in hepatic and neuronal cells. Molecular & Cellular Biology 1994; 14: 138–146
  • Ziegler S.F., Bird T.A., Morella K.K., Mosley B., Gearing D.P., Baumann H. Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Molecular & Cellular Biology 1993; 13: 2384–2390
  • Yoshikawa A., Murakami H., Nagata S. Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor. EMBO Journal 1995; 14: 5288–5296
  • Nicholson S.E., Starr R., Novak U., Hilton D.J., Layton J.E. Tyrosine residues in the granulocyte colony-stimulating factor (G-CSF) receptor mediate G-CSF induced differentiation of murine myeloid leukemic (M1) cells. Journal of Biological Chemistry 1996; 271: 26947–26953
  • Azam M., Lee C., Strehlow I., Schindler C. Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity 1997; 6: 691–701
  • Moriggl R., Berchtold S., Friedrich K., Standke G.J., Kammer W., Heim M., Wissler M., Stocklin E., Gouilleux F., Groner B. Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. Molecular & Cellular Biology 1997; 17: 3663–3678
  • Moriggl R., Gouilleux-Gruart V., Jahne R., Berchtold S., Gartmann C., Liu X., Hennighausen L., Sotiropoulos A., Groner B., Gouilleux F. Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Molecular & Cellular Biology 1996; 16: 5691–5700
  • Rosen R.L., Winestock K.D., Chen G., Liu X., Hennighausen L., Finbloom D.S. Granulocyte-macrophage colony-stimulating factor preferentially activates the 94-kD STAT5A and an 80-kD STAT5A isoform in human peripheral blood monocytes. Blood 1996; 88: 1206–1214
  • Zhang X., Blenis J., Li H.C., Schindler C., Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 1995; 267: 1990–1994
  • Wen Z., Zhong Z., Darnell J.E., Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82: 241–250
  • David M., Petricoin E.R., Benjamin C., Pine R., Weber M.J., Lamer A.C. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins [see comments]. Science 1995; 269: 1721–1723
  • Yu C.L., Meyer D.J., Campbell G.S., Lamer A.C., Carter-Su C., Schwartz J., Jove R. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 1995; 269: 81–83
  • Nielsen M., Kaltoft K., Nordahl M., Ropke C., Geisler C., Mustelin T., Dobson P., Svejgaard A., Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 6764–6769
  • Koeffler H.P. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. [Review]. Blood 1983; 62: 709–721
  • Saether A.K., Skrede B., Botilsrud M., Nilsson A., Norum K.R., Blomhoff R. Cultivation of HL-60 cells in a serum-free medium containing granulocyte/macrophage colony-stimulating factor. European Journal of Cell Biology 1991; 55: 346–351
  • Tasaka K., Nakaya N., Nonaka T. Effects of histamine, granulocyte colony-stimulating factor and db-cAMP on the differentiation of HL-60 cells. Agents & Actions 1990; 30: 240–242
  • Kim T.K., Maniatis T. Regulation of interferon-gamma-activated Stat1 by the ubiquitin-proteasome pathway. Science 1996; 273: 1717–1719
  • Shimozaki K., Nakajima K., Hirano T., Nagata S. Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. Journal of Biological Chemistry 1997; 272: 25184–24189
  • Lew D., Decker T., Strethlow I., Darnell J. Overlapping elements in the guanylate-binding gene promoter mediate transcriptional induction by alpha and gamma interferons. Molecular and Cellular Biology 1991; 11: 182
  • Levy D., Kessler D.S., Pine R., Reich N., Darnell J.E., Jr. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes and Development 1988; 2: 383–393
  • Schindler C., Fu X.Y., Improta T., Aebersold R., Darnell J.E., Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 7836–7839
  • Wagner B.J., Hayes T.E., Hoban C.J., Cochran B.H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO Journal 1990; 9: 4477–4484
  • Yamamoto K., Quelle F.W., Thierfelder W.E., Kreider B.L., Gilbert D.J., Jenkins N.A., Copeland N.G., Silvennoinen O., Ihle J.N. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Molecular & Cellular Biology 1994; 14: 4342–4349
  • Zhong Z., Wen Z., Darnell J.E., Jr. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 4806–4810
  • Mui A.L., Wakao H., O'Farrell A.M., Harada N., Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO Journal 1995; 14: 1166–1175
  • Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response [published erratum appears in. EMBO J Feb, 1995; 15(14(4))854–855
  • EMBO Journal 1994; 13: 2182–91
  • Hou J., Schindler U., Henzel W.J., Ho T.C., Brasseur M., McKnight S.L. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994; 265: 1701–1706
  • Murakami M., Narazaki M., Hibi M., Yawata H., Yasukawa K., Hamaguchi M., Taga T., Kishimoto T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 11349–11353

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.