45
Views
7
CrossRef citations to date
0
Altmetric
Original Article

The Potential for Monocyte-Mediated Immunotherapy During Infection and Malignancy - Part II: In Vivo Activation by Exogenous Cytokines and Clinical Applications

, , &
Pages 207-230 | Accepted 30 Oct 1998, Published online: 01 Jul 2009

References

  • Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation [Review]. Crit Care Med 1996; 24: 163–72
  • Ostermann H, Rothenburger M, Van De Loo J, Kienast J. Cytokine response to infection in patients with acute myelogenous leukaemia following intensive chemotherapy. Br J Haematol 1994; 88: 332–7
  • Carvalho De Sousa JP, Rastogi N. Comparative ability of human monocytes and macrophages to control the intracellular growth of Mycobactenurn avium and Mycobacterium tuberculosis: effect of interferon-gamma and indomethacin. FEMS Microbiol Immunol 1992; 4: 329–34
  • Thrasher AJ, Keep NH, Wientjes F, Segal AW. Chronic granulomatous disease [Review]. Biochim Biophys Acta 1994; 1227: 1–24
  • Klebanoff SJ. Oxygen metabolism and the toxic properties of phagocytes [Review]. Ann Intern Med 1980; 93: 480–9
  • Roilides E, Blake C, Holmes A, Pizzo PA, Walsh TJ. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol 1996; 34: 63–9
  • Hogasen AK, Abrahamsen TG, Gaustad P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol 1995; 42: 291–98
  • Yamamoto Y, Klein TW, Friedman H. Involvement of man-nose receptor in cytokine interleukin-1 beta (IL-lbeta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chernokine macrophage inflammatory protein lbeta (MIP-lbeta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun 1997; 65: 1077–82
  • Holland SM. Host defense against nontuberculous mycobac-terial infections [Review]. Semin Respir Infect 1996; 11: 217–30
  • Fazal N. The role of reactive oxygen species (ROS) in the effector mechanisms of human antimycobacterial immunity. Biochem Mol Biol Int 1997; 43: 399–408
  • Wassenaar TM, Engelskirchen M, Park S, Lastovica A. Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocyte/macrophages. Med Microbiol Immunol 1997; 186: 139–44
  • Chmiela M, Czkwianianc E, Wadstrom T, Rudnicka W. Role of Helicobacter pylon surface structures in bacterial interaction with macrophages. Gut 1997; 40: 20–4
  • Keisari Y, Kabha K, Nissimov L, Schlepper-Schafer J, Ofek I. Phagocyte-bacteria interactions [Review]. Adv Dent Res 1997; 11: 43–9
  • Liautard JP, Gross A, Domand J, Kohler S. Interactions between professional phagocytes and Brucella spp [Review]. Microbiologia 1996; 12: 197–206
  • Battistoni A, Donnarumma G, Greco R, Valenti P, Rotilio G. Overexpression of a hydrogen peroxide-resistant penplasmic CuZn superoxide dismutase protects Eschenchia coli from macrophage killing. Biochem Biophys Res Commun 1998; 243: 804–7
  • Fernandex-Prada CM, Hoover DL, Tall BD, Venkatesan. Human monocyte-derived macrophages infected with virulent Shigella flexnen in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect Immun 1997; 65: 1486–96
  • Durrbaum-Landmann I, Gercken J, Flad HD, Ernst M. Effect of in vitro infection of human monocytes with low numbers of Mycobacterium tuberculosis bacteria on monocyte apoptosis. Infect Immun 1996; 64: 5384–9
  • Mattsson E, Van Dijk H, Verhoef J, Norrby R, Rollof J. Supernatants from Staphylococcus epidermidis grown in the presence of different antibiotics induce differential release of tumor necrosis factor alpha from human monocytes. Infect Immun 1996; 64: 4351–5
  • Schulze J m, Breitner-Ruddock S, Von Briessen H, Brade V. High- and low-level cytokine induction in human peripheral blood mononuclear cells by different Borrelia burgdoferi strains. Med Microbiol Immunol 1996; 185: 31–7
  • Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM. Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-depen-dent pathway. Infect Immun 1996; 64: 1906–12
  • Dziarski R, Tapping RI, Tobias PS. Binding of bacterial peptidoglycan to CD14. J Biol Chem 1998; 273: 8680–90
  • Boland A, Comelis GR. Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect Immun 1998; 66: 1878–84
  • Esser R, Glienke W, Von Briesen H, Rubsamen-Waigmann H, Andreesen R. Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus. Blood 1996; 88: 3474–81
  • Canque B, Rosenzwajg M, Gey A, Tartour E, Fridman WH, Gluckman JC. Macrophage inflammatory protein-lalpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages. Blood 1996; 87: 2011–9
  • Holberg-Petersen M, Hogasen AK, Hogasen K, Abraham-Sen TG, Degre M, Rollag H. Infection with human cytomeg-alovirus (HCMV) stimulates monocyte production of complement factor 3. Arch Virol 1997; 142: 689–98
  • Badaro R, Nascimento C, Carvalho JS, Badaro F, Russo D, Ho JL, Reed SG, Johnson WD, Jones TC. Recombinant human granulocyte-macrophage colony-stimulating factor reverses neutropenia and reduces secondary infections in visceral leishmaniasis. J Infect Dis 1994; 170: 413–8
  • Weiser WY, Van Neil A, Clark SC, David JR, Remold HG. Recombinant human granulocyte/macrophage colony-stimulating factor activates intracellular killing of Leishmania donovani by human monocyte-derived macrophages. J Exp Med 1987; 166: 1436–46
  • Belosevic M, Davus CE, Meltzer MS, Nacy CA. Regulation of activated macrophage antimicrobial activities. Identification of lymphokines that cooperate with IFN-gamma for induction of resistance to infection. J Immunol 1988; 141: 890–6
  • Badaro R, Nascimento C, Carvalho JS, Badaro F, Russo D, Ho JL, Reed SG, Johnson WD, Jones TC. Granulocyte-macrophage colony-stimulating factor in combination with pentavalent antimony for the treatment of visceral Leishmaniasis. Eur J Clin Microbiol Infect Dis 1994; 13: 23–8
  • Hill AD, Naama HA, Gallagher HJ, Shou J, Calvano SE, Daly JM. Glucocorticoids mediate macrophage dysfunction in protein calorie malnutrition. Surgery 1995; 118: 130–6
  • Yamamoto Y, Klein TW, Tomioka M, Friedman H. Differnential effects of granulocyt/macrophage colony-stimulating factor (GM-CSF) in enhancing macrophage resistance to Legionella pneumophila vs Candida albicans. Cell Immunol 1997; 176: 75–81
  • Collins HL, Bancroft GJ. Cytokine enhancement of compe-ment-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol 1992; 22: 1447–54
  • Lechner AJ, Lamprech KE, Potthoff LH, Tredway TL, Matuschak GM. Recombinant GM-CSF reduces lung injury and mortality during neutropenic Candida sepsis. Am J Physiol 1994; 266: 561–8
  • Vazquez-Torres A, Balish E. Macrophages in resistance to candidiasis [Review]. Microbiol Mol Biol Rev 1997; 61: 170–92
  • Hebert JC, Oreilly M, Barry B, Shatney L, Sartorelli K. Effects of exogenous cytokines on intravascular clearance of bacteria in normal and splenectomised mice. J Trauma 1997; 43: 875–9
  • Williams MA, White SA, Miller JJ, Toner C, Withington S, Newland AC, Kelsey SM. Granulocyte-macrophage colony-stimulating factor induces activation and restores respiratory burst activity in monocytes from septic patients. J Infect Dis 1998; 177: 107–15
  • Williams MA, Withington S, Newland AC, Kelsey SM. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J Infect Dis 1998, In Press)
  • Austin OM, Redmond HP, Watson WG, Cunney RJ, Grace PA, Bouchier-Hayes D. The beneficial effects of immuno-stimulation in posttraumatic sepsis. J Surg Res 1995; 59: 446–9
  • Molloy RG, Holzheimer R, Nestor M, Collins K, Mannick JA, Rodrick ML. Granulocyte-macrophage colony-stimulating factor modulates immune function and improves survival after experimental thermal injury. Br J Surg 1995; 82: 770–6
  • Toda H, Murata A, Oka Y, Uda K, Tanaka N, Ohashi I, Mori T, Matsuura N. Effect of granulocyte-macrophage colony-stimulating factor on sepsis-induced organ injury in rats. Blood 1994; 83: 2893–8
  • Hebert JC, O'Reilly M. Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances pulmonary defences against pneumococcal infections after splenec-tomy. J Trauma 1996; 41: 663–6
  • Hebert JC, O'Reilly M, Yuenger K, Shatney L, Yoder DW, Barry B. Augmentation of alveolar macrophage phagocytic activity by granulocyte colony stimulating factor and inter-leukin-1: influence of splenectomy. J Trauma 1994; 37: 909–12
  • Sweeney JF, Rosemurgy AS, Wei S, Djeu JY. Candida antigen titer is a marker of neutrophil dysfunction after severe injury. J Trauma 1994; 36: 797–802
  • Bermudez LE, Kemper CA, Deresinski SC. Dysfunctional monocytes from a patient with disseminated Mycobaterium kansassii infection are activated in vitro and in vivo by GM-CSF. Biotherapy 1994; 8: 135–42
  • Bober LA, Grace MJ, Puglises-Sivo C, Rojas-Triana A, Sullivan LM, Narula SK. The effects of colony stimulating factors on human monocyte cell function. Int J Immunopharmacol 1995; 17: 385–92
  • Murray HW, Carvia JS, Hariprashad J, Taylor AP, Stoeckle MY, Hockman H. Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J Clin Invest 1995; 95: 1183–92
  • Offner F. Hematopoietic growth factors in cancer patients with invasive fungal infections [Review]. Eur J Microbiol Infect Dis 1997; 16: 56–63
  • Peters BG, Adkins DR, Harrison BR, Velasquez WS, Dunphy FR, Petruska PJ, Bowers CE, Niemeyer R, McIntyre W, Vrahnos D, Aubeny SE, Spitzer G. Antifungal effects of yeast-derived rhuGM-CSF in patients receiving high-dose chemotherapy given with or without autologous stem cell transplantation: a retrospective analysis. Bone Marrow Transplant 1996; 18: 93–102
  • Roilides E, Holmes A, Blake C, Venzon D, Pizzo PA, Walsh TJ. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte-macrophage colony-stimulating factor and interferon-gamma. J Infect Dis 1994; 170: 894–9
  • Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, Volk HD, Kox W. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nature Medicine 1997; 3: 678–81
  • Economopoulos T, Papageorgiou E, Stathalus N, Costantinidou M, Parharidou A, Kostourou A, Dervenoulas J, Raptis S. Treatment of high risk myelodysplastic syndromes with idarubicin and cytosine arabinoside supported by granulocyte-macrophage colony-stimulating factor (GM-CSF). Leuk Res 1996; 20: 385–90
  • Rose C, Wattel E, Bastion Y, Berger E, Bauters F, Coiffier B, Fenaux P. Treatment with very low-dose GM-CSF in myelodysplastic syndromes with neutropenia. A report on 28 cases. Leukemia 1994; 8: 1458–62
  • Maurer AB, Ganser A, Buhl R, Seipelt G, Ottmann OG, Mentzel U, Geissler RG, Hoelzer D. Restoration of impaired cytokine secretion from monocytes of patients with myelodysplastic syndromes after in vivo treatment with GM-CSF or IL-3. Leukemia 1993; 7: 1728–33
  • Meropol NJ, Wood DE, Nemunaitis J, Petrelli NJ, Lipman BJ, Agosti JM, Whitmore JB. Randomised, placebo-controlled, multicentre trial of granulocyte-macrophage colony-stimulating factor as infection prophylaxis in oncologic surgery. Leukine Surgical Prophylaxis Group. J Clin Oncol 1998; 16: 1167–73
  • Terashima T, Soejima K, Waki Y, Nakamura H, Fujishima S, Suzuki Y, Ishizaka A, Kanazawa M. Neutrophils activated by granulocyte colony-stimulating factor suppress tumor necrosis factor-alpha release from monocytes stimulated by endotoxin. Am J Respir Cell Mol Bioi 1995; 13: 69–73
  • El Hahbal MH, Smith L, Elliot MJ, Strobel S. Effect of heparin anticoagulation on neutrophil adhesion molecules and release of IL-8:C3 is not essential. Cardiovasc Res 1995; 30: 676–81
  • Waring PM, Presneill J, Maher DW, Layton JE, Cehon J, Waring LJ, Metcalf D. Differential alterations in plasma colony-stimulating factor concentrations in meningococcae-mia. Clin Exp Immunol 1995; 102: 501–6
  • Staveley-Ocarroll K, Sotomayor E, Montgomery J, Borrelo I, Hwang L, Fein S, Pardoll D, Levitsky H. Induction of antigen-specific T-cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 1998; 9.5: 1178–83
  • Chouaib S, Asselin-Paturel C, Mami-Chouaib F, Caignard A, Blay JY. The host tumor immune conflict: from immuno-suppression to resistance and destruction [Review]. Immuno1 Today 1997; 18: 493–7
  • Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back [Review]. J Immunol 1997; 158: 45214
  • Strand S, Galle PR. Immune evasion by tumours: involvement of the CD95 (APO-Was) system and its clinical implications [Review]. Mol Med Today 1998; 4: 63–8
  • Dermine S, Mavroudis D, Jiang YZ, Hensel N, Molldrem J, Barrett AJ. Immune escape from a graft-versus-leukemia effect may play a role in the relapse of myeloid leukemias following allogeneic bone marrow transplantation. Bone Marrow Transplant 1997; 19: 989–99
  • Powles R, Singhal S, Treleaven J, Kulkami S, Horton C, Mehta J. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 1998; 91: 3481–6
  • Papadopoulos EB, Carabasi MH, Castro-Malaspina H, Childs BH, Mackinnon S, Boulad F, Gillio AP, Keman NA, Small TN, Szabolcs P, Taylor J, Yahalom J, Collins NH, Bleau SA, Black PM, Heller G, Oreilly RJ. T-cell-depleted allogeneic bone marrow transplantation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host-disease. Blood 1998; 91: 1083–90
  • Appelbaum FR. Graft versus leukemia (GVL) in the therapy of acute lymphohlastic leukemia (ALL) [Review]. Leukemia 1997; 11: 15–7
  • Kolb HJ, Holler E. Adoptive immunotherapy with donor lymphocyte transfusions [Review]. Cum Opin Oncol 1997; 9: 139–45
  • Williams MA, Newland AC, Kelsey SM. Monocyte-medi-ated killing of human leukaemia is enhanced by administration of granulocyte-macrophage colony stimulating factor following chemotherapy. Brit J Haematol 1997; 98: 960–8
  • Higuchi M, Agganval BB. Differential roles of the TNF receptor in TNF-induced cytotoxicity, DNA fragmentation and differentiation. J Immunol 1994; 152: 4017–22
  • Cebon JS, Bury RW, Lieshchke GJ, Morsyn G. The effects of dose and route of administration on the pharmacokinetics of granulocyte-macrophage colony-stimulating factor. Eur J Cancer 1990; 26: 1064–69
  • Nagler A, Shur I, Barak V, Fabian I. Granulocyte-macrophage colony-stimulating factor dependent monocyte-mediated cytotoxicity post-autologous transplantation. Leuk Res 1996; 20: 637–43
  • Wiltchke C, Krainer M, Wagner A, Linkesch W, Zielinski CC. Influence of in vivo administration of GM-CSF and G-CSF on monocyte cytotoxicity. Exp Hematol 1995; 23: 402–6
  • Wing EJ, Magee M, Whiteside T, Kaplan S, Shadduck R. Recombinant human granulocyte-macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of TNF and interferon in cancer patients. Blood 1989; 73: 643–6
  • Chachoua A, Oratz R, Hoogmoed R, Caron D, Peace D, Lie-Bes L, Blum RH, Vilcek J. Monocyte activation following systemic adminmistration of granulocyte-macrophage colony-stimulating factor. J Immunother Emphasis Tumor Immunol 1994; 16: 132–41
  • Charak BS, Agah R, Mazumder A. Granulocyte-macrophage colony-stimulating factor-induced antibody-dependent cellular cytotoxicity in bone marrow macrophages:application in bone marrow transplantation. Blood 1993; 81: 3474–9
  • Wang BS, Lumanglas AL, Durr FE. Immunotherapy of a murine lymphoma by adoptive transfer of syngeneic macrophages activated with bisantrene. Cancer Res 1986; 46: 503–6
  • Stevenson HC, Keenan AM, Woodhouse C, Ottow RT, Miller P, Steller EP, Foon KA, Ahrams PG, Beman J, Larson SM. Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis. Cancer Res 1987; 47: 6100–03
  • Boccoli G, Masciulli R, Ruggeri EM, Carlini P, Giannella G, Montesoro E, Mastroherardino G, Isacchi G, Testa U, Calabresi F. Adoptive immunotherapy of human cancer: the cytokine cascade and monocyte actication following high-dose interleukin-2 bolus treatment. Cancer Res 1990; 50: 5795–800
  • Brugger W, Scheibenhogen C, Krause S, Andreesen R. Large-scale production of human tumorcytotoxic macrophages grown from blood monocytes of cancer patients. Cancer Detect Prev 1991; 15: 407–12
  • Faradji A, Bohbot A, Schmitt-Goguel M, Siffert JC, Dumont S, Wiesel ML, Piemont Y, Eischen A, Bergerat JP, Bartholeyns J. Large scale isolation of human blood monocytes by continuous flow centrifugation leukapheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients. J Immunol Methods 1994; 174: 297–309
  • Inamura N, Sone S, Okubo A, Singh SM, Ogura T. Heterog-eniety in response of human blood monocytes to granulo-cyte-macrophage colony-stimulating factor. J Leukoc Biol 1990; 47: 528–34
  • Hennemann B, Beckman G, Eichelmann A, Rehm A, Andreesen R. Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon-gamma and lipopolysaccharide. Cancer Immunol Immunother 1998; 45: 2506
  • Hennemann B, Rehm A, Kottke A, Meidenbauer N, Andreesen R. Adoptive immunotherapy with tumor-cytotoxic macrophages derived from recombinant human granulocyte colony-stimulating factor (rhuGM-CSF) mobilised peripheral blood monocytes. J Immunother 1997; 20: 365–71
  • Korbelik M, Naraparaju VR, Yamamoto N. Macroph-age-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br J Cancer 1997; 75: 202–7
  • Marienhagen J, Hennemann B, Andreesen R, Eilles C. 111 In-oxine labelling of tumour-cytotoxic macrophages generated in vitro from circulating blood monocytes: an in vitro evaluation. Nucl Med Commun 1995; 16: 357–61
  • Chokri M, Lopez M, Oleron C, Girard A, Martinache C, Canepa S, Siffert JC, Bartholeyns J. Production of human macrophages with potent antitumor properties (MAK) by culture of monocytes in the presence of GM-CSF and 1,25-dihydroxyvitamin D3. Anticancer Res 1992; 12: 2257–60
  • Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993; 343: 1134–37
  • Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J, Jr., Anderson WF, Ihle JN. Gene marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993; 341: 85–86
  • Van De Loosedrecht AA, Ossenkoppele GJ, Beelan RH, Broekhoven MG, Schweitzer K h, Langenhuijsen MM. In vitro purging of clonogenic leukaemic cells from human bone manow by interferon-gamma-activated monocytes. Cancer Immunol Immunother 1994; 38: 346–52
  • Old LJ. Immunotherapy for cancer [Review]. Sci Am 1996; 275: 136–43
  • Jager E, Ringhoffer M, Dienes HP, Arand M., Karbach J, Jager D, Ilsemann C, Hogerdom M, Oesch F, Knuth A. Granulocyte-macrophage-colony stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 1996; 67: 54–62
  • Fujimoto T, Donnell MA, Szilvasi A, Yang H, Duda RB. Baciluss-Calmette-Guerin plus interleukin-2 and/for granulocyte-macrophage colony stimulating factor enhances immunocompetent cell production of interferon-gamma, which inhibits B16F10 melanoma cell growth in vitro. Cancer Immunol Immunother 1996; 42: 280–4
  • Disk ML, Bemhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA. Granulocyte-macrophage colony-stimulating factor:an effective adjuvant for protein and peptide-based vaccines. Blood 1996; 88: 202–10
  • Kim CJ, Parkinson DR, Marincola F. Immunodominance across HLA polymorphism: implications for cancer immunotherapy [Review]. J Immunother 1998; 21: 1–16
  • Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC. Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol 1997; 27: 431–41
  • Girolomoni G, Riccardi-Castagnoli P. Dendritic cells hold promise for immunotherapy [Review]. Immunol Today 1997; 18: 102–04
  • Steinmann RM. Dendritic cells and immune-based therapies [Review]. Exp Hematol 1996; 24: 859–62
  • Barratt-Boyes SM, Henderson RA, Finn OJ. Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood. Immunology 1996; 87: 528–34
  • Christensen PJ, Armstron LR, Fak JJ, Chen GH, McDonald RA, Toews GB, Paine R. Regulation of rat pulmonary dendritic cell immunostimulatory activity by alveolar epithelial cell-derived granulocyte macrophage colony-stimulating factor. Am J Respir Cell Mol Biol 1995; 13: 426–33
  • Tazi A, Bouchonnet F, Grandsaigne M, Boumsell L, Hance AJ, Soler P. Evidence that granulocyte-macrophage-colony stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Invest 1993; 91: 566–76
  • Krosl G, Korbelik M, Krosl J, Dougherty GJ. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony stimulating factor. Cancer Res 1996; 56: 3281–6
  • Musiani P, Modesti A, Giovarelli M, Cavello F, Columbo MP, Lollini PL, Fomi G. Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunol Today 1997; 18: 32–36
  • Hanania EG, Kavanagh J, Hortobagyi G, Giles RE, Champlin R, Deisseroth AB. Recent advances in the application of gene therapy to human disease [Review]. Am J Med 1995; 99: 537–55
  • Dilloo D, Bacon K, Holden W, Zhong W, Burdach S, Zlotnik A, Brenner M. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nature Med 1996; 2: 1090–1095
  • Giboa E. Immunotherapy of cancer with genetically modified tumor vaccines [Review]. Semin Oncol 1996; 23: 101–7
  • Schmidt-Wolf G, Schmidt-Wolf IG. Cytokines and clinical gene therapy. Eur J Immunol 1995; 25: 1137–40
  • Ettinghousen SE, Rosenburg SA. Immunotherapy and gene therapy of cancer. Adv Surg 1995; 28: 223–54
  • Armstrong CA, Botella R, Galloway TH, Murray N, Kramp JM, Song IS, Ansel JC. Antitumor effects of granulocyte-macrophage colony stimulating factor production by melanoma cells. Cancer Res 1996; 56: 2191–98
  • Arca MJ, Krauss JC, Aruga A, Cameron MJ, Chang AE. Concurrent induction of CD4+ and CD8+ T cells during tumor growth with antitumor reactivity in adoptive immunotherapy. J Immunother 1997; 20: 138–45
  • Ziegler-Heitbrock HW, Strobl M, Fingerle G et al. Small (CD14+/CD16+) monocytes and regular monocytes in human blood. Pathobiology 1991; 59: 127–30
  • Ziegler-Heitbrock HW, Strobl M, Kieper D, et al. Differential expression of cytokines in human blood monocyte subpopulations. Blood 1992; 79: 503–11
  • Fingerle G, Pforte A, Passlick B, et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 1993; 82: 3170–6
  • Ziegler-Heitbrock HW, Fingerle G, Strobel M et al. The novel subset of CD14+/CD16+ blood monocytes exhibit features of tissue macrophages. Eur J Immunol 1993; 23: 2053–8
  • Otterlei M, Sundan A, Ryan L, et al. Effects of anti-CD 18 and LPS on CD14 expression on human monocytes. Scand J Immunol 1995; 41: 583–92
  • Hamon G, Mulloy RH, Chen G, et al. Transforming growth factor-beta 1 lowers the CD14 content of monocytes. J Surg Res 1994; 57: 574–8
  • Frankenberger M, Sternsdorf T, Pechumer H, et al. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 1996; 87: 373–7
  • Blumenstein M, Boekstegers P, Fraunberger P, et al. Cytokine production precedes the expansion of CD14+CD16 monocytes in human sepsis: a case report of a patient with self-induced septicemia. Shock 1997; 8: 73–5
  • Zheng M, Mrowietz U. Phenotypic differences between human blood monocyte subpopulations in psoriasis and atopic dermatitis. J Dermatol 1997; 24: 370–8
  • Pulliam L, Gascon R, Stubblebine M, et al. Unique monocyte subset in patients with AIDS dementia. Lancet 1997; 349: 692–5
  • Kampalath B, Cleveland RP, Kass L. Reduced CD4 and HLA-DR expression in neonatal monocytes. Clin Immunol Immunopathol 1998; 87: 93–100
  • Ferrero E, Bondanza A, Leone BE, et al. CD14+CD34+ peripheral blood mononuclear cells migrate across endothelium and give rise to immunostimulatory dendritic cells. J Immunol 1998; 160: 2675–83
  • Palucka KA, Taquet N, Sanchez-Chapuis F, et al. Dendritic cells as the terminal stage of monocyte differentiation. 3 Immunol 1998; 160: 4587–95
  • Ziegler-Heitbrock HW. Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. Immunol Today. 1996; 17: 424–8
  • Zheng M, Mrowietz U. Phenotypic differences between human blood monocyte subpopulations in psoriasis and atopic dermatitis. J Dennatol 1997; 24: 370–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.