68
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Potential for Monocyte-Mediated Immunotherapy ring Infection and Malignancy. Part I: Apoptosis Induction and Cytotoxic Mechanisms

, &
Pages 1-23 | Accepted 30 Aug 1998, Published online: 01 Jul 2009

References

  • Perez C, Albert I, Defay K, Zachariades N, Gooding L, Krigler M. A non-secretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990; 63: 251–58
  • Peck R, Brockhaus M, Frey J R. Cell surface tumour necrosis factor (TNF) accounts for monocyte and lymphocyte-mediated killing of TNF-resistant target cells. Cell Immunol 1989; 122: 1–10
  • Nagata S, Golstein P. The Fas death factor [Review]. Science 1995; 267: 1449–56
  • Gearing A J, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson A H, Drummond A H, Galloway W A, Gilbert R, Gordon J L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 1994; 370: 555–7
  • Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80kDa tumor necrosis factor receptor. Cell 1995; 83: 793–802
  • Tartaglia L A, Ayres T M, Wong G HW, Goeddel D V. A novel domain within the 55kd TNF receptor signals cell death. Cell 1993; 74: 845–53
  • Tewari M, Dixit V M. Fas and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 1995; 270: 3255–60
  • Nagata S. Apoptosis by death factor [Review]. Cell 1997; 355–65
  • Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–78
  • Kitson J, Raven T, Jiang Y P, Goeddel D V, Giles K M, Pun K T, Grinham C J, Brown R, Farrow S N. A death-domain-containing receptor that mediates apoptosis. Nature 1996; 384: 372–5
  • Montogomery R I, Warner M S, Lum B J, Spear P G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87: 427–36
  • Brojatsch J, Naughton J, Rolls M M, Zingler K, Young J AT. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 1996; 87: 845–55
  • Vandenabeele P, DeClercq W, Vanhaesebroeck B, Grooten J Fiers W. Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 1995; 154: 2904–13
  • Itoh N, Nagata S. A novel protein domain required for apoptosis:mutantional analysis of human Fas antigen. J Biol Chem 1993; 268: 10932–7
  • Baichwal V R, Baeuerle P A. Activate NF-kappa B or die. Curr Biol 1997; 7: 94–6
  • Boldin M P, Goncharov T M, Golstev Y V, Wallach D. Involvement of MACH, a novel MORTl/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85: 803–15
  • Muzio M, Chinnaiyan A M, Kischkel F C, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz J D, Zhang M, Gentz R, Mann M, Krammer P H, Peter M E, Dixit V M. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signalling complex. Cell 1996; 85: 817–27
  • Natoli G, Costanzo A, Ianni A, Templeton D J, Woodgett J R, Balsano C, Levrero M. Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 1997; 275: 200–03
  • Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387–96
  • Reusing Ehl A, Hess S, Ziegler-Heitbrock H W, Riethmuller G, Engelmann H. Fas/Apo-1 activates nuclear factor kappa B and induces interleukin-6 production. J. Inflamm 1995; 45: 161–74
  • Wajant H, Johannes F J, Haas E, Siemienski K, Schwenzer R, Schubert G, Weiss T, Grell M, Scheurich P. Dominant-negative FADD inhibits TNFR60-, Fas/Apo-1-and TRAIL-R/Apo-2-mediated cell death but not gene induction. Curr Biol 1998; 8: 113–6
  • Anel A, Simon A K, Auphan N, Buferne M, Boyer C, Golstein P, Schmitt-Verhulst A M. Two signalling pathways can lead to Fas ligand expression in CD8+ cytotoxic T-lymphocyte clones. Eur J Immunol 1995; 25: 3381–7
  • Schulze-Osthoff K, Kramer P H, Droge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 1994; 13: 4587–96
  • Schwander R, Wiegmann K, Bernardo K, Kreder D, Kronke M. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 1998; 273: 5916–22
  • Cock J G, Tepper A S, De Vries E, Van Blitterswijk W J, Borst J. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J Biol Chem 1998; 272: 7560–5
  • Scaffidi C, Medema J P, Krammer P H, Peter M E. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 1997; 272: 26953–8
  • Shu H B, Halpin D R, Goeddel D V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 1997; 6: 751–63
  • White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996; 10: 1–15
  • Memon S A, Hou J, Moreno M B, Zacharchuk C M. Apoptosis induced by a chimeric Fas/FLICE receptonlack of requirement for Fas- or FADD-binding proteins. J Immunol 1998; 160: 2046–9
  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50
  • Hockenberry D, Nunez G, Milliman C, Schreiber R D, Korsmeyer S J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–6
  • Korsmeyer S J. Regulators of cell death. Trends Genet 1995; 11: 101–5
  • Kluck R M, Bossy-Wetzel E, Green D R, Newmeyer D D. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–36
  • Yang J, Liu X, Bhalla K, Kim C N, Ibrado A M, Cai J, Peng T-I, Jones D P, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132
  • Huang D CS, Adams I S, Cory S. The conserved N-terminal domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029–39
  • Pan G, O'Rourke K, Dixit V M. Caspase-9, Bcl-XL and Apaf-1 form a ternary complex. J Biol Chem 1998; 272: 5841–5
  • Li P, Nijhawan D, Budihardjo I, Srinivasula S M, Ahmad M, Alnemri E S, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–89
  • Totpal K, Singh S, Lapushkin R, Aggarwal B B. Qualitative and quantitative differences in the cellular responses mediated through Fas antigen and tumor necrosis factor receptor. J Interferon Cytokine Res 1996; 16: 259–67
  • Monney L, Olivier R, Otter I, Jansen B, Poirier G G, Bomer C. Role of an acidic compartment in tumor necrosis factor-induced production of ceramide, activation of caspase-3 and apoptosis. Eur J Biochem 1998; 251: 295–303
  • Roy N, Deveraux Q L, Takahashi R, Salvesen G S, Reed J C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997; 16: 6914–25
  • Adida C, Crotty P L, McGrath J, Berrebi D, Diebold J, Altieri D C. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 1998; 152: 43–9
  • Duckett C S, Li F, Wang Y, Tomaselli K J, Thompson C B, Armstrong R C. Human IAP-like protein regulates programmed cell death downstream of Bcl-X1 and cytochrome c. Mol. Cell Biol 1998; 18: 608–15
  • Chu Z L, McKinsey T A, Liu L, Malim M H, Ballard D W. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis C-IAP2 is under NF-kappa B control. Proc Natl Acad Sci USA 1997; 94: 10057–62
  • Olsson I, Gatanaga T, Gullberg U, Lantz M, Granger G A. Tumour necrosis factor (TNF) binding proteins (soluble TNF receptor forms) with possible roles in inflammation and malignancy [Review]. Eur Cytokine Netw 1993; 4: 169–80
  • Menegazzi R, Cramer R, Patriarca P, Scheurich P, Dri P. Evidence that tumor necrosis factor a (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood 1994; 84: 287–93
  • Khwaja A, Carver J E, Linch D C. Interactions of granulocyte-macrophage colony stimulating factor (CSF). granulocyte-CSF and tumor necrosis factor alpha in the priming of the neutrophil respiratory burst. Blood 1992; 79: 745–53
  • Sakai N, Milstien S. Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages. Biochem Biophys Res Commun 1993; 193: 378–83
  • Bermudez L E. Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 1993; 91: 277–81
  • Belenky S N, Robbins R A, Rubinstein I. Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J Leukoc Biol 1993; 53: 498–503
  • Paul-Eugene N, Kolb J P, Sarfati M, Arock M, Ouaaz F, Debre P, Mossalayi D M, Dugas B. Ligation of CD23 activates soluble guanylate cyclase in human monocytes via an L-arginine-dependent mechanism. J Leukoc Biol 1995; 57: 160–7
  • Zinetti M, Fantuzzi G, Delgado R, Di Santo E, Ghezzi P, Fratelli M. Endogenous nitric oxide production by human monocytic cells regulates LPS-induced TNF production. Eur Cytokine Netw 1995; 6: 45–8
  • Zembala M, Siedler M, Marcinkiewicz J, Pryjma J. Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur J Immunol 1994; 24: 435–9
  • Pietraforte D, Tritarelli E, Testa U, Minetti M. gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages. J Leukoc Biol 1994; 55: 175–82
  • Karupiah G, Xie Q W, Buller R ML, Nathan C, Duarte C, MacMicking J D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993; 261: 1445–48
  • De Maria R, Cifone M G, Trotta R, Rippo M R, Festuccia C, Santoni A, Testi R. Triggering of human monocyte activation through CD69. a member of the natural killer cell gene complex family of signal transducing receptors. J Exp Med 1994; 180: 1999–2004
  • Hill J R, Corbett J A, Kwon G, Marshall C A, McDaniel M L. Nitric oxide regulates interleukin 1 bioactivity released from murine macrophages. J Biol Chem 1996; 271: 22672–78
  • Iuvone T, D'Acquisito F, Carnuccio R, Di Rosa M. Nitric oxide inhibits LPS-induced tumor necrosis factor synthesis in vitro and in vivo. Life Sci 1996; 59: PL207–11
  • Persoons J H, Schornagel K, Tilders F F, De Vente J, Berkenbosch F, Kraal G. Alveolar macrophages autoregulate IL-1 and IL-6 production by endogenous nitric oxide. Am J Respir Cell Mol Biol 1996; 14: 272–78
  • Walker D H, Popov V L, Crocquet-Valdes P A, Welsh C JR, Feng H M. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 1997; 76: 129–38
  • Takahashi M, Kitagawa S, Masuyama J I, Ikeda U, Kasahara T, Takahashi Y I, Furukawa Y, Kano S, Shimeda K. Human monocyte-endothelial cell interaction induces synthesis of granulocyte-macrophage colony-stimulating factor. Circulation 1996; 93: 1185–93
  • Bone R C. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation [Review]. Crit Care Med 1996; 24: 163–72
  • Ostermann H, Rothenburger M, Van de Loo J, Kienast J. Cytokine response to infection in patients with acute myelogenous leukaemia following intensive chemotherapy. Br J Haematol 1994; 88: 332–7
  • Carvalho de Sousa J P, Rastogi N. Comparative ability of human monocytes and macrophages to control the intracellular growth of Mycobacterium avium and Mycobacterium tuberculosis: effect of interferon-gamma and indomethacin. FEMS Microbiol Immunol 1992; 4: 329–34
  • Roilides E, Blake C, Holmes A, Pizzo P A, Walsh T J. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol 1996; 34: 63–9
  • Morgenstern D E, Gifford M AC, Li L L, Doerschuk C M, Dinauer M C. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defence and inflammatory response to Aspergillus fumigatus. J Exp Med 1997; 185: 207–218
  • Hogasen A K, Abrahamsen T G, Gaustad P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol 1995; 42: 291–98
  • Roilides E, Holmes A, Blake C, Venzon D, Pizzo P A, Walsh T J. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae:enhancement by granulocyte-macrophage colony-stimulating factor and interferon-gamma. J Infect Dis 1994; 170: 894–9
  • Roilides E, Blake C, Holmes A, Pizzo P A, Walsh T J. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol 1996; 34: 63–9
  • Calderone R, Sturtevant J. Macrophage interactions with Candida. Immunol Ser 1994; 60: 505–15
  • Ayala A, Urbanich M A, Herdon C D, Chaudry I H. Is sepsis-induced apoptosis associated with macrophage dysfunction. J Trauma 1996; 40: 568–73
  • Mangan D F, Wahl S M. Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines. J Immunol 1991; 147: 3408–12
  • Mangan D F, Robertson B, Wahl S M. IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. J Immunol 1992; 148: 1812–6
  • Cox G. IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of neutrophils. Am J Physiol 1996; 271: 566–71
  • Squier M KT, Sehnert A J, Cohen J J. Apoptosis in leukocytes. J Leukoc Biol 1995; 57: 2–10
  • Williams M A, Withington S, Newland A C, Kelsey S M. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J Infect Dis 1998, (In Press)
  • Seatter S C, Li M H, Bubrick, West M A. Endotoxin pre-treatment of human monocytes alters subsequent endotoxin-triggered release of inflammatory mediators. Shock 1995; 3: 252–8
  • Randow F, Syrbe Meisel U, Krausch D, Zuckerman H, Platzer C, Volk H D. Mechanism of endotoxin desensitization: involvement of interleukin-10 and transforming growth factor-b. J Exp Med 1995; 181: 1887–92
  • Hiramatsu M, Hotchkiss R S, Karl I E, Buchman T G. Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung and gut by an endotoxin and TNF-independent pathway. Shock 1997; 7: 247–53
  • Mangan D F, Welch G R, Wahl S M. Lipopolysaccharide, tumor necrosis factor-a and IL-1b prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J Immunol 1991; 146: 1541–6
  • Ruckdeschel K, Roggenkamp A, Lafont V, Mangeat P, Heeseman J, Rouot B. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect Immunol 1997; 65: 4813–21
  • Hilbi H, Chen Y, Thirumalai K, Zychlinsky A. The interleukin 1beta-converting enzyme, caspase-1 is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immunol 1997; 65: 5165–70
  • Fuss I J, Strober W, Dale J K, Fritz S, Pearlstein G R, Puck J H, Lenardo M J, Straus S E. Characterisitic T helper 2 T cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by defective apoptosis and humoral autoimmunity. J Immunol 1997; 158: 1912–8
  • Wang S D, Huang K J, Lin Y S, Lei H Y. Sepsis-induced apoptosis of the thymocytes in mice. J Immunol 1994; 152: 5014–21
  • Bingisser R, Stey C, Weller M, Groscurth P, Russi E, Frei K. Apoptosis in human alveolar macrophages is induced by endotoxin and is modulated by cytokines. Am J Repir Cell Mol Biol 1996; 15: 64–70
  • Bach M K, Brashler J R. Evidence that granulocyte/macrophage-colony-stimulating factor and interferon-gamma maintain the viability of human peripheral blood monocytes in part by their suppression of IL-10 production. Int Arch Allergy Immunol 1995; 107: 90–2
  • Fidler I J, Schroit A J. Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta 1988; 948: 151–9
  • Hasday J D, Shah E A, Lieberman A P. Macrophage tumor encrosis factor-alpha release is induced by contact with some tumors. J Immunol 1990; 145: 37109
  • Yamauchi T, Sagawa T, Kanoh M, Utsumi S. Lymphokine-independent, leukemia cell-mediated induction of tumor necrosis factor in human monocytes. Cancer Res 1990; 50: 2708–12
  • Jadus M R, Irwin M CN, Irwin M R, Horansky R D, Sekhon S, Pepper K A, Kohn D B, Wepsic H T. Macrophages can recognise and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 1996; 87: 5232–52
  • Philip R, Epstein L B. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, gamma-interferon and interleukin-1. Nature 1986; 323: 86–9
  • Bernasconi S, Peri G, Sironi M, Mantovani A. Involvment of leucocyte (beta 2) integrins (CD18, CD 11) in human monocyte tumoricidal activity. Int J Cancer 1991; 49: 267–73
  • Civil A, Geerts M, Aarden L A, Verweij C L. Evidence for a role of CD28RE as a response element for distict mitogenic T cell activation signals. Eur J Immunol 1992; 22: 3041–43
  • Creery W D, Diaz-Mitoma F, Filion L, Kumar A. Differential modulation of B7–1 and B7–2 isoform expression on human monocytes by cytokines which influence the development of T helper cell phenotype. Eur J Immunol 1996; 26: 1273–7
  • Kremer I B, Hilkens C M, Sylva-Steenland R M, Koomen C W, Kapsenberg M L, Bos J D, Teunissen M B. Reduced IL-12 production by monocytes upon unltraviolet-B irradiation selectively limits activation of T helper-1 cells. J Immunol 1996; 157: 1913–18
  • Jager E, Ringhoffer M, Dienes H P, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A. Granulocyte-macrophage-colony stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 1996; 67: 54–62
  • Dong H D, Kimoto Y, Takai S, Taguchi T. Apoptosis as a mechanism of lectin-dependent monocyte-mediated cytotoxicity. Immunol Invest 1996; 25: 65–78
  • Lo S K, Golenbock D T, Sass P M, Maskati A, Xu H, Silver-Stein R L. Engagement of the Lewis X antigen (CD 15) results in monocyte activation. Blood 1997; 89: 307–14
  • Perez C, Albert I, Defay K, Zachariades N, Gooding L, Kriegler M. A non-secretable cell surface mutant of tumour necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990; 63: 251–8
  • Munn D H, Cheung N KV. Phagocytosis of tumor cells by human macrophages cultured in recombinant human macrophage colony-stimulating factor. J Exp Med 1990; 172: 231–7
  • Green S J, Chen T Y, Crawford R M, Nacy C A, Morrison D C, Meltzer M S. Cytotoxic activity and production of toxic nitrogen oxides by macrophages treated with IFN-γ and monoclonal antibodies against the 73-kDa lipopolysaccharide receptor. J Immunol 1992; 149: 2069–75
  • Zarling J M, Shoyab M, Marquardt H, Hansom M B, Lioubin M N, Todaro G J, Oncostatin M. a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 1986; 83: 9739–43
  • Albina J E. On the expression of nitric oxide synthase by human macrophages. Why no NO. J Leukoc Biol 1995; 58: 643–9
  • Bauer H, Jung T, Tsikas D, Stichtenoth D O, Frolich J C, Neumann C. Nitric oxide inhibits the secretion of T-helper 1 and T-helper 2-associated cytokines in activated human T cells. Immunology 1997; 90: 205–11
  • Weiss G, Wachter H, Fuchs D. Linkage of cell-mediated immunity to iron metabolism. Immunol Today 1995; 16: 495–500
  • Tsuji Y, Miller L L, Miller S C, Torti S V, Torti F M. Tumor necrosis factor-alpha and interleukin-1 regulate transferrin receptor in human diploid fibroblasts. Relationship to the induction of ferritin heavy chain. J Biol Chem 1991; 266: 7257–61
  • Seiser C, Teixeira S, Kuhn L C. Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor. J Biol Chem 1993; 268: 13074–80
  • Wiesz A, Oguchi S, Cicatiello L, Esumi H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and bacterial lipopolysaccharide. J Biol Chem 1994; 269: 8324–333
  • Grabstein K H, Urdal D L, Tushinski R, Mochizuki D, Price V, Cantrell M A, Gillis S, Conlon P J. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony stimulating factor. Science 1986; 232: 508–11
  • Cannistra S A, Vallenga E, Groshek P, Rambaldi A, Griffin J D. Human granulocyte-monocyte colony stimulating factor and interleukin-3 stimulate monocyte cytotoxicity through a TNF-dependent mechanism. Blood 1988; 71: 672–6
  • Cannistra S A, Rambaldi A, Spriggs D R, Herrmann F, Kufe D, Griffin J D. Human granulocyte-macrophage colony stimulating factor induces expression of the tumor necrosis factor gene by the U937 cell-line and by normal human monocytes. J Clin Invest 1987; 79: 1720–28
  • Griffin J D, Spertini O, Ernst T J, Belvin M P, Levine H B, Kanakura Y, Tedder T F. Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes and their precursors. J Immunol 1990; 145: 576–84
  • Liles W C, Ledbetter J A, Waltersdorph A W, Klebanoff S J. Cross-linking of CD45 enhances activation of the respiratory burst in response to specific stimuli in human phagocytes. J Immunol 1995; 155: 2175–84
  • Young MR, Halpin J, Wang J, Wright M A, Mathews J, Pak A S. 1 alpha,25-dihydroxyvitamin D3 plus gamma-interferon blocks lung tumor production of granulocyte-macrophage colony-stimultaing factor and induction of immunosuppressor cells. Cancer Res 1993; 53: 6006–10
  • Watanabe N, Tsuji N, Tsuji Y, Sasaki H, Okamoto T, Akiyama S, Kobayashi D, Sato T, Yamauchi N, Niitsu Y. Endogenous tumor necrosis factor inhibits the cytotoxicity of exogenous tumor necrosis factor and adriamycin in pancreatic carcinoma cells. Pancreas 1996; 13: 395–400
  • Kim K M, Kim D K, Park Y M, Kim C K, Na D S. Annexin-1 inhibits phospholipase A2 by specific interaction, not by substrate depletion. FEBS Lett 1994; 343: 251–5
  • Enari M, Hug H, Hayakawa M, Ito F, Nishimura Y, Negata S. Different apoptotic pathways mediated by Fas and the tumor necrosis factor receptor. Cytosolic phosphoplipase A2 is not involved in Fas-mediated apoptosis. Eur J Biochem 1996; 236: 533–8
  • Stein U, Walther W, Shoemaker R H. Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer Inst 1996; 88: 1383–92
  • Malorni W, Rainaldi G, Tritareili E, Rivabene R, Cianfriglia M, Lehnert M, Donelli G, Peschele C, Testa U. Tumor necrosis factor alpha is a powerful apoptotic inducer in lymphoid leukemic cells expressing the P-170 glycoprotein. Int J Cancer 1996; 67: 238–47
  • Jia L, Kelsey S M, Grahn M F, Jiang X R, Newland A C. Increased activity and senstivity of mitochondrial respiratory enzymes to tumor necrosis factor a-mediated inhibition is associated with increased cytotoxicity in drug-resistant leukemic cell lines. Blood 1996; 87: 2401–10
  • Walther W, Stein U, Pfeil D. Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdrl expression and potentiation of chemosensitivity. Int J Cancer 1995; 61: 832–9
  • Nishioka Y, Sone S, Heike Y, Hamada H, Ariyoshi K, Tsuruo T, Ogura T. Effector cell analysis of human multidrug-resistant cell killing by mouse-human chimeric antibody against P-glycoprotein. Jpn J Cancer Res 1992; 83: 644–9
  • Yano S, Sone S, Nishioka Y, Naito M, Tsuruo T, Ogura T. Cyclosporin A enhances susceptibility of multi-drug resistant human cancer cells to anti-P-glycoprotein antibody-dependent cytotoxicity of monocyters, but not of lymphocytes. Jpn J Cancer Res 1994; 85: 194–203
  • Heike Y, Hamada H, Inamura N, Sone S, Ogura T, Tsuruo T. Monoclonal anti-P-glycoprotein antibody-dependent killing of multidrug-resistant tumor cells by human mononuclear cells. Jpn J Cancer Res 1990; 81: 1155–61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.