40
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Molecular and Cellular Correlates of Methotrexate Response in Childhood Acute Lymphoblastic Leukemia

&
Pages 1-20 | Published online: 01 Jul 2009

References

  • Margolin J. F., Poplack D. G., Pizza P. A. Acute lymphoblastic leukemia. In: Principles and Practice of Pediatric Oncology, D. G. Poplack. J. B. Lippincon Co, Philadelphia 1997
  • Kersey J. H. Fifty years of studies of the biology and therapy of childhood leukemia. Blood 1997; 90: 4243–4251
  • Pui C. H., Evans W. E. Aute lymphoblastic leukemia. N. Engl. J. Med. 1998; 339: 605–615
  • Farber S., Diamond L., Mercer R. D., Sylvester R. F., Wolff V. A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-ami-nopteroyl glutamic acid (aminopterin). N. Eng. J. Med. 1948; 238: 787–793
  • Borowitz M. J., Carroll A. J., Shuster J. J., Look A. T., Behm F. G., Pullen D. J., Land V. J., Steuber P., Crist W. M. Use of clinical and laboratory features to define prognostic subgroups in B-precursor acute lymphoblastic leukemia: experience of the Pediatric Oncology Group. Recent Results in Cancer Research 1993; 131: 257–267
  • Pui C. H., Behm F. G., Crist W. M. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 1993; 82: 343–362
  • Smith M., Arthur D., Camitta B., Carroll A. J., Crist W., Gaynon P., Gelber R., Herema N., Korn E. L., Link M., Murphy S., Pui C. H., Pullen J., Reaman G., Sallan S. E., Sather H., Shuster J., Simon R., Trigg M., Tubergen D., Uckun F., Ungerleider R. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J. Clin. Oncol. 1996; 14: 18–24
  • Shuster J. J., Falletta J. M., Pullen J., Crisf W. M., Humphrey B., Dowell B. L., Wharam M. D., Borowitz M. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 75: 166173
  • Pui C. H., Boyett J. M., Hancock M. L., Pratt C. B., Meyer W. H., Crist W. M. Outcome of treatment for childhood cancer in black as compared with white children. The St. Jude Children's Research Hospital experience. JAMA 1995; 273: 633–637
  • Raimondi S. C. Current status of cytogcnetic research in childhood acute lymphoblastic leukemia. Blood 1993; 81: 2237–2251
  • Pui C. H., Cnst W. M., Look A. T. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 1990; 76: 149–1463
  • Uckun F. M., Sensel M. G., Sun L., Steinhen Trigg. M. E., Heerema N. A., Sather H. N., Reaman G. H., Gaynon P. S. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood 1998; 91: 735–746
  • Faderl S., Kantarjian H. M., Talpaz M., Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 1998; 91: 3995–4019
  • Ziemin-van der Poel S., McCabe N. R., Gill H. J., Espi-Nosa R., Patel Y., Harden A., Rubinelli P., Smith S. D., LeBeau M. M., Rowley J. D., Diaz M. O. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci., U. S. A. 1991; 88: 10735–10739
  • De Klein A., Hagemeijer A., Bartram C. R., Houwen R., Hoefsloof L., Carbonell F., Chen L., Barnett M., Greaves M., Kleihauer E., Heisterkamp N., Groffen, Grosvels G. BCR rearrangment and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood 1986; 68: 1369–1375
  • Kunrock R., Shtalrid M., Romero P., Loetzer W. S., Talpaz M., Trujillo J. M., Blick M., Beran M., Gutterman J. U. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukemia. Nature 1987; 325: 631–635
  • Trueworthy R., Shuster J., Look T., Crist W., Borowitz M., Carroll A., Frankel L., Harris M., Wagner H., Haggard M., Mosijczuk A., Pullen J., Steuber P., Land V. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia in childhood: A Pediatric Oncology Group study. J. Clin. Oncol. 1992; 10: 606–613
  • Raimondi S. C., Pui C. H., Hancock M. L., Behm F. G., Filatov L., Rivera G. K. Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia 1996; 10: 213–224
  • Harris M. B., Shuster J. J., Cmll A., Look A. T., Borow-Itz M. J., Crisf W. M., Nitschke R, Pullen J., Steuber C. P., Land V. J. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992; 79: 3316–3324
  • McLRan T. W., Ringold S., Neuberg D., Stegmaier K., Tantravahi R., Rib J., Koeffler H. P., Takeuchi S., Jans-Sen J. W. G., Seriu T., Bartram C. R., Sallan S. E., Gilliland D. G., Golub T. R. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996; 88: 4252–4258
  • Nakao M., Yokota S., Horiike S., Taniwaki M., Kashima K., Sonoda Y., Koizumi S., Takaue Y., Matsushita X, Fujimoto T., Misawa S. Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia 1996; 10: 1463–1470
  • Shurtleff S. A., Buijs A., Behm F. G., Rubnitz J. E., Raimondi S. D., Hancock M. L., Chan G. C. F., Pui C. H., Grosveld G., Downing J. R. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989
  • Harbott J., Viehmann S., Borkhardt A., Henze G., Lampert F. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997; 90: 4933–4937
  • Raimondi S. C., Shurtleff S. A., Downing J. R., Rubnitz J., Mathew S., Hancock M., Hi C. H., Rivera G. K., Grosveld G. C., Behm F. G. 12p Abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood 1997; 90: 4559–4566
  • Rubnitz J. E., Downing C. H., Shurtleff Hi., Raimondi S. C., Evans W. E., Head D. R., Crist W. M., Rivera G. K., Hancock M. L., Boyett J. M., Buijs A, Grosveld G., Behm F. G. TEL rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J. Clin. Oncol. 1997; 15: 1150–1157
  • Golub T. R., Barker F. G., Bohlander S. K., Hiebert S. W., Ward D. C., Bray-Ward P., Morgan E., Raimondi S. C., Rowley J. D., Gilliland D. G. Fusion of the TEL gene on 12p13 to the AML1 gen on 21q22 in acute lymphoblastic leukemia. Roc. Natl. Acad. Sci. U. S. A. 1995; 92: 4917–4921
  • Romana S. P., Machaugge M., LeConiat M., Chumakov I., LePaslier D., Berger R., Bernard O. A. The t(12;21) of actue lymphoblastic leukemia results in a TEL-AML1 gene fusion. Blood 1995; 12: 3662–3670
  • Nucifora G., Rowley J. D. AML1 and the 8;21 and 3;21 translocations in acute chronic myeloid leukemia. Blood 1995; 86: 1–14
  • Golub T. R., McLean T., Stegmaier K., Tomasson Carroll M, Gilliland D. G. The TEL gene and human leukemia. Biochim. Biophys. Acta 1996; 1288: M7–M10
  • Sato Y., Suto Y., Pietenpol J., Golub T. R., Gilliland D. G., Davis E. M., LeBeau M. M., Roberts J. M., Vogelstein B., Rowley J. D., Bohlander S. K. TEL and KIP1 define the smallest region of deletions on 12q22 in hematopoietic malignancies. Blood 1995; 86: 1525–1533
  • Pietenpol J. A., Bohlander S. K., Sato Y., Papadopoulos N., Liu B., Friedman C., Trask B. J., Toberts J. M., Kin-Zler K. W., Rowle JD, Vogelstein B. Assignment of the human p27KIP1 gene to 12p13 and its analysis in leukemias. Cancer Res. 1995; 55: 1206–1210
  • Hiebert S. W., Sun W., Davis J. N., Golub T. R., Shurtleff S., A J. R. D., Grosveld G., Roussel M., Gilliland D. G., Lenny N., Meyers S. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol. Cell. Biol. 1996; 16: 1349–1355
  • Meyers S., Lenny N., Sun W., Hiebert S. W. AML-2 is a potential target for transcriptional regulation by the t(8;21) and the t(12;21) fusion proteins in acute leukemia. Oncogene 1996; 13: 303–312
  • Drexler H. G. Review of alterations of the cyclindependent kinase inhibitor INK4 family genes p15, p16, p18, and p19 in human leukemia-lymphoma cells. Leukemia 1998; 12: 845–859
  • Ohnishi H., Kawamura M., Ida K., Sheng X. M., Hanada R., Nobori T., Yamamori S., Hayashi Y. Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. Blood 1995; 86: 1269–1275
  • Rasool O., Heyman M., Brandter L. B., Liu Y., Grander D., Soderhall S., Einhorn S. p15ink4B and p16ink4 gene inactivation in acute lymphoblastic leukemia. Blood 1995; 85: 3431–3436
  • Takeuchi S., Bartram C. R., Seriu T., Miller C. W., Tobler A., Janssen J. W., Reiter A., Ludwig W. D., Zimmerman M., Schwaller J., Lee E., Miyoshi I., Koeffler H. P. Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia ofchildhood. Blood 1995; 86: 755–760
  • Iolascon A., Faienza M. F., Coppola B., Ragione ED., Schettini F., Biondi A. Homozygous deletions of cylin-dependent kinase inhibitor genes p161NK4A and p18, in childhood T-cell lineage acute lymphoblasic leukemias. Leukemia 1996; 10: 255–260
  • Nakao M., Yokota S., Kaneko H., Seriu T., Koizumi S., Takaue Y., Fujimoto T., Misawa S. Alterations of CDK2 gene structure in childhood acute lymphoblastic leukemia: mutations of CDKN2 are observed preferentially in T-lineage. Leukemia 1996; 10: 249–254
  • Heyman M., Rasool O., Borgonovo B. L., Liu Y., Grander D., Soderhall S., Gustavsson G Einhorn S. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J. Clin. Oncol. 1996; 14: 1512–1520
  • Diccianni M. B., Yu J., Hsiao M., Mukherjee S., Shao L. E., Yu A. L. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood 1994; 84: 3105–3112
  • Hsiao M. H., Yu A. L., Yeargin J., Ku D., Haas M. Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood 1994; 83: 2922–2930
  • Goldman I. D., Matherly L. H. The cellular pharmacology of methotrexate. Pharmacol. Ther. 1985; 28: 77–102
  • Matherly L. H., Taub J. W. Methotrexate pharmacology and resistance in childhood acute lymphoblastic leukemia. Leukemia and Lymphoma. 1996; 21: 359–368
  • Sirotnak F. M. Obligate genetic expression in tumor cells of a fetal membrane property mediating “folate” transport: Biological significance and implications of improved therapy of human cancer. Cancer Res. 1985; 45: 3992–4000
  • Henderson G. B., Zevely E. M. Transport routes utilized by L1210 cells for the influx and efflux of methotrexate. J. Biol. Chem. 1984; 259: 1526–1631
  • Saxena M., Henderson G. B. MOAT4, a novel multispecific organic-anion transporter for glucuronides and mercapturates in mouse L1210 cells and human erythro-cytes. Biochem. J. 1996; 320: 273–281
  • Moscow J. A., Gong M., He R., Sgagias M. K., Dixon K. H., Anzick S. L., Mettzer P. S., Cowan K. H. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res. 1995; 55: 3790–3794
  • Williams F. M. R., Flintoff W. F. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J. Biol. Chem. 1995; 270: 2987–2992
  • Wong S. C., Proefke S. A., Bhushan A., Matherly L. H. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport defective Chinese hamster ovary cells. J. Biol. Chem. 1995; 270: 17468–17475
  • Zhang L., Wong S. C., Matherly L. H. Structure and organization of the human reduced folate carrier gene. Biochim. Biophys. Acta 1998; 1442: 389–393
  • Tolner B., Roy K., Sirotnak EM. Structural analysis of the human RFC-I gene encoding a folate transporter reveals multiple promoters and alternatively spliced transcripts with 5′ end hyeterogeneity. Gene 1998; 211: 331–341
  • Zhang L., Wong S. C., Matherly L. H. Transcript heterogeneity of the human reduced folate carrier results from the use of multiple promoters and variable splicing of alternative upstream exons, Biochem. J. 1998; 332: 773–780
  • Blakley R. L. Dihydrofolate reductase. Chemistry and Biochemistry of Folates, R. L. Blakley, S. J. Benkovic. John Wiley and Sons, New York 1984; 191–253
  • Fry D. W., Yalowich J. C., Goldman I. D. Rapid formation of polyglutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cells. J. Biol. Chem. 1982; 257: 1890–1896
  • Jolivet J., Schilsky R. L., Bailey B. D., Drake J. C., Chab-Ner B. A. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J. Clin. Invest. 1982; 70: 351–360
  • Chen L., Qi H., Korenberg J., Garrow T. A., Choi Y. J., Shane B. Purification and properties of human cytosolic folylpoly-γ-glutamate synthetase and organization, localization, and differential splicing of its gene. J. Biol. Chem. 1996; 271: 13077–13087
  • Allegra C. J., Chabner B. A., Drake J. C., Lutz R., Rod-Bard D., Jolivet J. Enhanced inhibition of thymidy-late synthase by methotrexate polyglutamates. J. Biol. Chem. 1985; 260: 9720–9726
  • Allegra C. J., Drake J., Jolivet J., Chabner B. A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc. Natl. Acad. Sci., U. S. A. 1985; 82: 4881–4885
  • Schuetz J. D., Matherly L. H., Westin E. H., Goldman I. D. Evidence for a functional defect in the translocation of the methotrexate transport carrier in a methotrexate resistant murine L1210 leukemia cell line. J. Biol. Chem. 1988; 263: 9840–9847
  • Sirotnak F. M., Moccio D. M., Kelleher L. E., Goutas L. J. Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate resistant L1210 clonal cell lines derived in viva. Cancer Res 1981; 41: 4447–4452
  • Biedler J. L., Albrecht A. M., Hutchinson D. J., Spengler B. A. Drug response, dihydrofolate reductase, and cytogenetics of amethopterin resistant Chinese hamster cells in vitro. Cancer Res. 1972; 32: 153–161
  • Schimke R. T. Gene amplification, drug resistance, and cancer. Cancer Res. 1984; 44: 1735–1742
  • Fischer G. A. Increased levels of folic acid reductase to amethopterin in leukemic cells. Biochem. Pharmacol. 1961; 7: 75–77
  • Hakala M. T., Zaknewski S. F., Nichol C. A. Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J. Biol. Chem. 1961; 236: 952–958
  • Pizzorno G., Chang Y. M., McGuire J. J., Bertino J. R. Inherent resistance of human squamous carcinoma cell lines to methotrexate as a result of decreased polyglutamylation of this drug. Cancer Res. 1989; 49: 5275–5280
  • Pizzorno G., Mini E., Coronnello M., McGuire J. J., Moroson B. A., Cashmore A. R., Dreyer R. N., Lin J. T., Mazzei T., Periti P., Bertino J. R. Impaired poly-glutamylation of methotrexate as a cause of resistance in CCRF-CEM cells after short-term, high-dose treatment with this drug. Cancer Res. 1988; 48: 2149–2155
  • McCloskey D. E., McGuire J. J., Russell C. A., Rowan B. G., Bertino J. R., Pizzorno G., Mini R. Decreased folylpolyglutamate synthetase activity as a mechanism of methotrexate resistance in CCRF-CEM human leukemia sublines. J. Biol. Chem. 1991; 266: 6181–6187
  • Kellems R. E., Ah F. W., Schimke R. T. Regulation of folate reductase synthesis in sensitive and methotrexate resistant sarcoma 180 cells. In vitro translation and characterization of folate reductase mRNA. J. Biol. Chem. 1976; 251: 6987–6993
  • Alt R. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate resistant variants of cultured murine cells. J. Biol. Chem. 1978; 253: 1357–1370
  • Dolnick B. J., Berenson R. J., Bertino J. R., Kaufman R. J., Nunberg J. H., Schimke R. T. Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region in L5178y cells. J. Cell Biol. 1979; 83: 394–402
  • Li W. W., Ran J., Hochhauser D., Banejee D., Zielinski Z., Almasan A., Yin Y., Kelly R., Wahl G. M., Bertino J. R. Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proc. Natl. Acad. Sci., U. S. A. 1995; 92: 10436–10440
  • Hochhauser D., Schnieders B., Ercikan-Abali E., Gorlick R., Muise-Helmericks R., Li W. W., Fan J., Banejee D., Bertino J. R. Effect of cyclin DI overexpression on drug sensitivity in a human fibrosarcoma cell line. J. Natl. Cancer Inst. 1996; 88: 1269–1275
  • Wong S. C., McQuade R., Proefke S. A., Bhushan A., Matherly L. H. Human K562 transfectants expressing high levels of reduced folate carrier by exhibiting low transport activity. Biochem. Pharmacol. 1997; 53: 199–206
  • Gong M., Yess J., Connolly T., Ivy S. P., Ohnuma T., Cowan K. H., Moscow J. A. Molecular mechanism of antifolate transport-deficiency in a methotrexate resistant MOLT-3 human leukemia cell line. Blood 1997; 89: 2494–2499
  • Brigle K. E., Spinella M. J., Sierra E. E., Goldman I. D. Characterization ofa mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J. Biol. Chem. 1995; 270: 22974–22979
  • Roy K., Tolner B. M., Chiao J. H., Sirotnak F. M. A single amino acid difference within the folate transporter encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells. J. Biol. Chem. 1998; 273: 2526–2531
  • Jansen G., Mauritz R., Drori S., Sprecher H., Kathmann I., Bunni M., Priest D. G., Noordhuis P., Schornagel J. H., Pinedo J. M., Peters G. J., Assaraf Y. G. A structurally altered human reduced folate canier with increased folic acid transpolt mediates a novel mechanism of antifolate resistance. J. Biol. Chem. 1998; 273: 30189–30198
  • Rhee M. S., Wang Y., Nair M. P., Galivan J. Acquisition of resistance to antifolates caused by enhanced γ-glutamyl hydrolase activity. Cancer Res. 1993; 53: 2227–2230
  • Niethammer D., Diddens H., Gekeler V., Frese G., Hand-Gretinger R., Henze G., Schmidt H., Probst H. Resistance to methotrexate and multidrug resistance in childhood malignancies. Adv. Enzyme Reg. 1989; 29: 231–245
  • Goker E., Waltham M., Kheradpour A., Lippett T., Mazumdar M., Elisseyeff Y., Schnieders B., Steinhertz P., Tan C., Berman E., Bertino J. R. Amplification of the dihydrofolate reductase gene is a mechanism of acquired resistance to methotrexate in patients with acute lymphoblastic leukemia and is correlated with p53 gene mutations. Blood 1995; 86: 677–684
  • Matherly L. H., Taub J. W., Wong S. C., Simpson P. M., Ekizian E., Buck S., Williamson M., Amylon M., Pullen J., Camitta B., Ravindranath Y. Increased frequency of expression of elevated dihydrofolate reductase in T-cell versus B-precursor acute lymphoblastic leukemia in children. Blood 1997; 90: 578–589
  • Matherly L. H., Taub J. W., Ravindranath Y., Proefke S. A., Wong S. C., Gimotty P., Buck S., Wright J. E., Rosowsky A. Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphocytic leukemia. Blood 1995; 85: 500–509
  • Rosowsky A., Wright J. E., Shapiro H., Beardsley P., Lazarus H. A new fluorescent dihydrofolate reductase probe for studies of methotrexate resistance. J. Biol. Chem. 1982; 257: 14162–14167
  • Yeargin J., Cheng J., Yu A. L., Gjerset R., Bogart M., Haas M. p53 mutation in acute T cell lymphoblastic leukemia is of somatic origin and is stable during establishment of T-cell acute lymphoblastic leukemia cell lines. J. Clin. Invest. 1993; 91: 2111–2117
  • Marks D. I., Kurz B. W., Link M. P., Ng E., Shuster J. J., Lauer S. J., Brodsky I., Haines D. S. High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood 1996; 87: 1155–1161
  • Imamura J., Miyoshi I., Koeffler H. P. p53 in hematologic malignancies. Blood 1994; 84: 2412–2421
  • Bueso-Ramos C. E., Yang Y., Deleon E., McCown P., Stass S. A., Albitar M. The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623
  • Marks D. I., Kurz B. W., Link M. P., Ng E., Shuster J. J., Lauer S. J., Brodsky I., Haines D. S. High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood 1996; 87: 1155–1161
  • Zhou M., Yeager A. M., Smith S. D., Findley H. W. Overexpression of the MDM2 gene by childhood acute lyrnphoblasic leukemia cells expressing the wild type p53 gene. Blood 1992; 85: 1608–1614
  • Takeuchi S., Bartram C. R., Seriu T., Miller C. W., Tobler A., Janssen J. W., Reiter A., Ludwig W. D., Zimmerman M., Schwaller J., Lee E., Miyoshi I., Koeffler H. P. Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16 /MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia of childhood. Blood 1995; 86: 755–760
  • Cayuela J. M., Madani A., Sanhes L., Stem M. H., Sigaux F. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 1996; 87: 2180–2186
  • Hebert J., Cayuela J. M., Berkeley J., Sigaux F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leuekemias. Blood 1994; 84: 4038–4044
  • Diccianni M. B., Batova A., Yu J., Vu T., Pullen J., Amylon M., Polock B. H., Yu A. L. Shortened survival after relapse in T-cell acute lymphoblastic leukemia patients with p16/p15 deletions. Leukemia Res. 1997; 21: 549–558
  • Heyrnan M., Rasool O., Borgonovo B. L., Liu Y., Grander D., Soderhall S., Gustavsson G Einhorn S. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J. Clin. Oncol. 1996; 14: 1512–1520
  • Kees U., Burton P. R., Lu C., Baker D. L. Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clincial outocme. Blood 1997; 89: 4161–4166
  • Zhang L., Taub J. W., Williamson M., Wong S. C., Hukku B., Pullen J., Ravindranath Y., Matherly L. H. Reduced folate canier gene expression in childhood acute lymphoblastic leukemia: Relationship to immu-nophenotype and ploidy. Clin. Cancer Res. 1998; 4: 2169–2177
  • Gorlick R., Goker E., Trippett T., Steinherz P., Elisseyeff Y., Mazumdar M., Flintoff W. F., Bertino J. R. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphoblastic leukemia and is associated with decreased reduced folate canier expression. Blood 1997; 89: 1013–1018
  • Goker E., Lin J. T., Trippett T., Elisseyeff Y., Tong W. P., Niedzwiecki D., Tan C., Steinherz P., Schweitzer B. I., Bertino J. R. Decreased polyglutamylation of methotrexate in acute lymphoblastic leukemia blasts in adults compared to children with this disease. Leukemia 1993; 7: 1000–1004
  • Masson E., Relling M. V., Synold T. W., Liu Q., Schuetz J. D., Sandlund J. T., Pui C. H., Evans W. E. Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. J. Clin. Invest. 1996; 97: 73–80
  • Synold T. W., Relling M. V., Boyett J. M., Rivera G. K., Sandlund J. T., Mahmoud H., Crist W. M., Pui C. H., Evans W. E. Blast cell methotrexate polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J. Clin. Invest. 1994; 94: 1996–2001
  • Whitehead V. M., Rosenblatt D. S., Vuchich M. J., Shuster J. J., Witte A., Beaulieu D. Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts at diagnosis ofchildhood acute lymphoblastic leukemia: A pilot prognostic factor analysis. Blood 1990; 76: 44–49
  • Barredo J. C., Synold T. W., Laver J., Relling M. V., Pui C-H., Priest D. G., Evans W. E. Differences in constitutive and post-methotrexate folylpolyglutamate syn-thetase activity in B-lineage and T-lineage leukemia. Blood 1994; 84: 564–569
  • Whitehead V. M., Vuchich M. J., Lauer S. J., Mahoney D., Carroll A. J., Shuster J. J., Esseltine D. W., Payment C., Look A. T., Akabutu J., Bowen T., Taylor L. D., Camitta B., Pullen D. J. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts fmm children with hyperdiploid (>50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1992; 80: 1316–1323
  • Whitehead V. M., Vuchich M. J., Cooky L., Lauer S. J., Mahoney D. H., Shuster J. J., Payment C., Bernstein M. L., Akabutu J. J., Bowen T., Kamen B. A., Watson M. S., Look A. T., Pullen D. J., Camitta B. Translocations invovlving chromosome 12p11–13, methotrexate metabolism, and outcome in childhood B-progenitor cell acute lymphoblastic leukemia: A Pediatric Oncology Group study. Clin. Cancer Res. 1998; 4: 183–188
  • Peeters M., Poon A. Down syndrome and leukaemia: unusual clinical aspects and unexpected methotrexate sensitivity. Eur. J. Pediatr. 1987; 146: 416–422
  • Longo G. S., Gorlick R., Tong W. P., Lin S., Steinherz P., Bertino J. R. Gamma-glutamyl hydrolase and folylpolyglutamate synthetase activities predict poly-glutamylation of methotrexate in acute leukemias. Oncol. Res. 1997; 9: 259–263
  • Rosenfeld C., Goutner A., Choquet C., Venuat A. M., Kayibanda B., Pico J. L. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature 1977; 267: 841–844
  • Uphoff C. C., MacLeod R. A. F., Denkmann S. A., Golub T. R., Borkhardt A., Janssen J. W. G., Drexler H. G. Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines. Leukemia 1997; 11: 441–447
  • Livingstone L. R., White A, Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild type p53. Cell 1992; 70: 923–935
  • Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C., Wahl G. M. Wild type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948
  • Almasan A., Linke S. P., Paulson T. G., Huang L. C., Wahl G. M. Genetic instability as a consequence of inappropriate enby into and progression through S phase. Cancer Metastasis Reviews 1995; 14: 59–73
  • Cordon-Cardo C. Mutation of cell cycle regulators. Biological and clinical implications for human neoplasia. Am. J. Pathology 1995; 147: 545–560
  • Sherr C. J. Cancer cell cycles. Science 1996; 274: 1672–1677
  • Lowe S. W., Bodis S., McClatchey A., Remington L., Ruley H. E., Fisher D. E., Housman E. E., Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810
  • Haffner R., Oren M. Biochemical properties and biological effects of p53. Cum. Opin. Cell Biol. 1995; 6: 853–858
  • Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell 1992; 70: 523–526
  • Levine A. J. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331
  • Agarwal M. L., Taylor W. R., Chernov M. V., Chernova O. B., Stark G. R. The p53 network. J. Biol. Chem. 1998; 273: 1–4
  • Wattel E., Preudhomme C., Hecquet B., Vanrumbeke M., Quesnel B., Dervite I., Morel P., Fenaux P. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157
  • Cheng J., Haas M. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines. Mol. Cell. Biol. 1990; 10: 5502–5509
  • Wada H., Asada M., Nakazawa S., Itoh H., Kobayashi Y., Inoue T., Fukumuro K., Chan L. C., Sugita K., Hanada R., Akuta N., Kobayashi N., Mizutani S. Clonal expansion of p53 mutant cells in leukemia progression in vitro. Leukemia 1994; 8: 53–59
  • Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245
  • Xiao Z. X., Chen J., Levine A. J., Modjtahedi N., Xing J., Sellers W. R., Livingston D. M. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 375: 694–698
  • Martin K., Trouche D., Hagemeier C., Sorensen T. S., La Thangue N. B., Kouzarides T. Stimulation of E2Fl/DPl transcriptional activity by MDM2 oncoprotein. Nature 1995; 375: 691–694
  • Oliner J. D., Kinzler K. M., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53 associated protein in human sarcoma. Nature 1992; 358: 80–83
  • Hirama X, Koeffler H. P. Role of the cyclin-depen-dent kinase inhibitors in the development of cancer. Blood 1995; 86: 841–854
  • Cobrinik D., Lee M. H., Hannon G., Mulligan G., Bron-Son R. T., Dyson N., Harlow E., Beach D., Weinbert R. A., Jacks T. Shared role of the pRb-related p130 and p107 limb development. Genes Dev. 1996; 10: 1633–1644
  • Lee M. H., Williams B. O., Mulligan G., Mukai S., Bron-Son R. T., Dyson N., Harlow E., Jacks T. Targeted disruption of p107: functional relationship between p107 and Rb. Genes Dev. 1996; 10: 1621–1632
  • Thomas N. S. B., Pizzey A. R., Tiwari S., Williams C. D., Yang J. p130. p107. and pRb are differentially regulated in proliferating cells and during cell cycle arrest by α-interferon. J. Biol. Chem. 1998; 273: 23659–23667
  • Beijersbergen R. L., Bernards R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim. Biophys. Acta 1996; 1287: 103–120
  • Hannon G. J., Beach D. p15INK4B is a potential effector of TGF-b˜-induced cell cycle arrest. Nature 1994; 371: 257–261
  • Serrano M., Hannon G. J., Beach D. A new regulation motif in cell cycle control causing specific inhbition of cyclin D/CDK4. Nature 1993; 366: 704–707
  • Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V., Stockert E., Day R. S., Johnson B. E., Skolnick M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–440
  • Batova A., Diccianni M. B., Nobori T., Vu T., Yu J., Bridgeman L., Yu A. L. Frequent deletion of the methylthioadenosine phosphorylase bene in T-cell acute lymphoblastic leukemia: strategies for enzyme targeted therapy. Blood 1996; 88: 3083–3090
  • Dnyling M. H., Bohlander S. K., Le Beau M. M., Olopade O. I. Refined mapping of genomic rearrangements involving the short arm of chromosome 9 in acute lymphoblastic leukemias and other hemataologic malignancies. Blood 1995; 86: 1931–1938
  • Iravani M., Dhaf R., Rice C. M. Methylation of the multi tumor suppressor gene-2[MTS2. CDKN1, p15(INK4B)] in childhood acute lymphoblastic leukemia. Oncogene 1997; 15: 2609–2614
  • Batova A., Diccianni M. B., Yu J. C., Nobori T., Lunk M. P., Pullen J., Yu A. L. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res. 1997; 57: 832–836
  • Shah S. J., Taub J. W., Radewan T. L., Fu F., Moon D., Pollock B. H., Zhang L., Amylon M., Behm F. G., Pullen J., Ravindranath Y., Matherly L. H. Relationship of p15 and p16 gene deletions to elevated dihydrofolate reductase (DHFR) in childhood acute lymphoblastic leukemia (ALL). Abstracts, Annual Meeting for American Society for Hematology: Blood. 1998; 92: 220a
  • Ahuja H. G., Jat P. S., Foti A., Bar-Eli M., Cline M. J. Abnormalities of the retinoblastoma gene in the pathogenesis of acute leukemia. Blood 1991; 78: 3259–3268
  • Sauerbrey A., Stammler G., Zintl F., Volm M. Expression and prognostic value of the retinoblastoma tumour suppressor gene (RB-1) in childhood acute lymphoblastic leukaemia. Brit. J. Haematol. 1996; 94: 99–104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.