55
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Alkaline Phosphatase, Defensin Gene Expression and Effect of Myeloid Cell Growth Factors in Normal and Leukemic Cells

, , &
Pages 237-247 | Received 14 Apr 1998, Published online: 05 Aug 2009

References

  • Borregaard N. The human neutrophil. Function and dysfunction. European Journal of Haematology 1988; 41: 401–413
  • Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Journal of Experimental Medicine 1971; 134: 907–934
  • Lehrer R. I., Ganz T. Antimicrobial polypeptides of human neutrophils. Blood 1990; 76: 2169–2181
  • Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. Journal of Cell Biology 1968; 39: 299–317
  • Ganz T., Selsted M. E., Szklarek D., Harwig S. S., Daher K., Bainton D. F., Lehrer R. I. Defensins. Natural peptide antibiotics of human neutrophils. Journal of Clinical Investigation 1985; 76: 1427–1435
  • Starkey P. M., Barrett A. J. Human cathepsin G. Catalytic and immunological properties. Biochemical Journal 1976; 155: 273–278
  • Campanelli D., Detmers P. A., Nathan C. F., Gabay J. E. Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. Journal of Clinical Investigation 1990; 85: 904–915
  • Weiss J., Olsson I. Cellular and subcellular localization of the bactericidal/permeability-increasing protein of neutrophils. Blood 1987; 69: 652–659
  • Spitznagel J. K., Dalldorf F. G., Leffell M. S., Folds J. D., Welsh I. R., Cooney M. H., Martin L. E. Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Laboratory Investigation 1974; 30: 774–785
  • Bretz U., Baggiolini M. Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. Journal of Cell Biology 1974; 63: 251–269
  • Damiano V. V., Kucich U., Murer E., Laudenslager N., Weinbaum G. Ultrastructural quantitation of peroxidase- and elastase-containing granules in human neutrophils. American Journal of Pathology 1988; 131: 235–245
  • West B. C., Rosenthal A. S., Gelb N. A., Kimball H. R. Separation and characterization of human neutrophil granules. American Journal of Pathology 1974; 77: 41–66
  • Cramer E., Pryzwansky K. B., Villeval J. L., Testa U., Breton-Gorius J. Ultrastructural localization of lactoferrin and myeloperoxidase in human neutrophils by immunogold. Blood 1985; 65: 423–432
  • Ringel E. W., Soter N. A., Austen K. F. Localization of histaminase to the specific granule of the human neutrophil. Immunology 1984; 52: 649–658
  • Kjeldsen L., Bainton D. F., Sengelov H., Borregaard N. Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood 1993; 82: 3183–3191
  • Kjeldsen L., Bainton D. F., Sengelov H., Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 1994; 83: 799–807
  • Murphy G., Reynolds J. J., Bretz U., Baggiolini M. Collagenase is a component of the specific granules of human neutrophil leucocytes. Biochemical Journal 1977; 162: 195–197
  • Segal A. W., Jones O. T. The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils. Biochemical Journal 1979; 182: 181–188
  • Borregaard N., Heiple J. M., Simons E. R., Clark R. A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. Journal of Cell Biology 1983; 97: 52–61
  • Borregaard N., Tauber A. I. Subcellular localization of the human neutrophil NADPH oxidase. b-Cytochrome and associated flavoprotein. Journal of Biological Chemistry 1984; 259: 47–52
  • Jesaitis A. J., Buescher E. S., Harrison D., Quinn M. T., Parkos C. A., Livesey S., Linner J. Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. Journal of Clinical Investigation 1990; 85: 821–835
  • Fletcher M. P., Gallin J. I. Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl-methionyl-leucyl-phenylalanine. Blood 1983; 62: 792–799
  • Yoon P. S., Boxer L. A., Mayo L. A., Yang A. Y., Wicha M. S. Human neutrophil laminin receptors: activation-dependent receptor expression. Journal of Immunology 1987; 138: 259–265
  • Bainton D. F., Miller L. J., Kishimoto T. K., Springer T. A. Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. Journal of Experimental Medicine 1987; 166: 1641–1653
  • Singer I. I., Scott S., Kawka D. W., Kazazis D. M. Adhesomes: specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin, and vitronectin in human polymorphonuclear leukocytes and monocytes. Journal of Cell Biology 1989; 109: 3169–3182
  • Sengelov H., Kjeldsen L., Diamond M. S., Springer T. A., Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. Journal of Clinical Investigation 1993; 92: 1467–1476
  • Dewald B., Bretz U., Baggiolini M. Release of gelatinase from a novel secretory compartment of human neutrophils. Journal of Clinical Investigation 1982; 70: 518–525
  • Kjeldsen L., Bjerrum O. W., Askaa J., Borregaard N. Subcellular localization and release of human neutrophil gelatinase, confirming the existence of separate gelatinase-containing granules. Biochemical Journal 1992; 287: 603–610
  • Morel F., Dewald B., Berthier S., Zaoui P., Dianoux A. C., Vignais P. V., Baggiolini M. Further characterization of the gelatinase-containing particles of human neutrophils. Biochimica et Biophysica Acta 1994; 1201: 373–380
  • Mollinedo F., Schneider D. L. Subcellular localization of cytochrome b and ubiquinone in a tertiary granule of resting human neutrophils and evidence for a proton pump ATPase. Journal of Biological Chemistry 1984; 259: 7143–7150
  • Lacal P., Pulido R., Sanchez-Madrid F., Mollinedo F. Intracellular location of T200 and Mo1 glycoproteins in human neutrophils. Journal of Biological Chemistry 1988; 263: 9946–9951
  • Mollinedo F., Gomez-Cambronero J., Cano E., Sanchez-Crespo M. Intracellular localization of platelet-activating factor synthesis in human neutrophils. Biochemical & Biophysical Research Communications 1988; 154: 1232–1239
  • Hibbs M. S., Bainton D. F. Human neutrophil gelatinase is a component of specific granules. Journal of Clinical Investigation 1989; 84: 1395–1402
  • Borregaard N., Miller L. J., Springer T. A. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 1987; 237: 1204–1206
  • Borregaard N., Christensen L., Bejerrum O. W., Birgens H. S., Clemmensen I. Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. Journal of Clinical Investigation 1990; 85: 408–416
  • Kobayashi T., Robinson J. M. A novel intracellular compartment with unusual secretory properties in human neutrophils. Journal of Cell Biology 1991; 113: 743–756
  • Sengelov H., Nielsen M. H., Borregaard N. Separation of human neutrophil plasma membrane from intracellular vesicles containing alkaline phosphatase and NADPH oxidase activity by free flow electrophoresis. Journal of Biological Chemistry 1992; 267: 14912–14917
  • Bjerrum O. W., Borregaard N. Dual granule localization of the dormant NADPH oxidase and cytochrome b559 in human neutrophils. European Journal of Haematology 1989; 43: 67–77
  • Calafat J., Kuijpers T. W., Janssen H., Borregaard N., Verhoeven A. J., Roos D. Evidence for small intracellular vesicles in human blood phagocytes containing cytochrome b558 and the adhesion molecule CD11b/CD18. Blood 1993; 81: 3122–3129
  • Rice W. G., Ganz T., Kinkade J., Jr., Selsted M. E., Lehrer R. I., Parmley R. T. Defensin-rich dense granules of human neutrophils. Blood 1987; 70: 757–765
  • Borregaard N., Cowland J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 1997; 89: 3503–3521
  • Tsuruta T., Tani K., Hoshika A. Myeloperoxidase gene expression and regulation by myeloid cell growth factors in normal and leukemic cells, Leukemia and Lymphoma, (in press)
  • Low M. G. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochemical Journal 1987; 244: 1–13
  • Kam W., Clauser E., Kim Y. S., Kan Y. W., Rutter W. J. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proceedings of the National Academy of Sciences of the United States of America 1985; 82: 8715–8719
  • Millan J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. Journal of Biological Chemistry 1986; 261: 3112–3115
  • Henthorn P. S., Knoll B. J., Raducha M., Rothblum K. N., Slaughter C., Weiss M., Lafferty M. A., Fischer T., Harris H. Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 5597–5601
  • Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 7182–7186
  • Berger J., Garattini E., Hua J. C., Udenfriend S. Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proceedings of the National Academy of Sciences of the United States of America 1987; 84: 695–698
  • Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proceedings of the National Academy of Sciences of the United States of America 1987; 84: 1234–1238
  • Millan J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 3024–3028
  • Watanabe S., Watanabe T., Li W. B., Soong B. W., Chou J. Y. Expression of the germ cell alkaline phosphatase gene in human choriocarcinoma cells. Journal of Biological Chemistry 1989; 264: 12611–12619
  • Smith M., Weiss M. J., Griffin C. A., Murray J. C., Buetow K. H., Emanuel B. S., Henthorn P. S., Harris H. Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1p36.1-p34. Genomics 1988; 2: 139–143
  • Wachstein M. Alkaline phosphatase activity in normal and abnormal human blood and bone marrow cells. The Journal of Laboratory and Clinical Medicine 1946; 31: 1–17
  • Hayhoe F. G. J., Quaglino D. Cytochemical demonstration and measurement of leucocyte alkaline phosphatase activity in normal and pathological states by a modified azo-dye coupling technique. British Journal of Haematology 1958; 4: 375–389
  • Smith G. P., Harris H., Peters T. J. Studies of the biochemical and immunological properties of human neutrophil alkaline phosphatase with comparison to the established alkaline phosphatase isoenzymes. Clinica Chimica Acta 1984; 142: 221–230
  • Weiss M. J., Ray K., Henthorn P. S., Lamb B., Kadesch T., Harris H. Structure of the human liver/bone/kidney alkaline phosphatase gene. Journal of Biological Chemistry 1988; 263: 12002–12010
  • Henthorn P. S., Raducha M., Kadesch T., Weiss M. J., Harris H. Sequence and characterization of the human intestinal alkaline phosphatase gene. Journal of Biological Chemistry 1988; 263: 12011–12019
  • Stewart C. A. Leucocyte alkaline phosphatase in myeloid maturation. Pathology 1974; 6: 287–293
  • Rosenblum D., Petzold S. J. Granulocyte alkaline phosphatase. Studies of purified enzymes from normal subjects and patients with polycythemia vera. Journal of Clinical Investigation 1973; 52: 1665–1672
  • Rosenblum D., Petzold S. J. Neutrophil alkaline phosphatase: comparison of enzymes from normal subjects and patients with polycythemia vera and chronic myelogenous leukemia. Blood 1975; 45: 335–343
  • Lewis S. M., Dacie J. V. Neutrophil leucocyte) alkaline phosphatase in paroxysmal nocturnal haemoglobinuria. British Journal of Haematology 1965; 11: 549–556
  • Trubowitz S., Feldman D., Benante C., Hunt V. M. The alkaline phosphatase content of the human polymorphonuclear leukocyte in blood and marrow. American Journal of Clinical Pathology 1959; 31: 481–486
  • Pedersen B. Functional and biochemical phenotype in relation to cellular age of differentiated neutrophils in chronic myeloid leukaemia. British Journal of Haematology 1982; 51: 339–344
  • Bendix-Hansen K., Kerndrup G. Myeloperoxidase-deficient polymorphonuclear leucocytes. (V): Relation to FAB-classification and neutrophil alkaline phosphatase activity in primary myelodysplastic syndromes. Scandinavian Journal of Haematology 1985; 35: 197–200
  • Hook E. B., Engel R. R. Leucocyte life-span, leucocyte alkaline phosphatase, and the 21st chromosome. The Lancet 1964; 1: 112
  • Galbraith P. R. Studies on the longevity, sequestration and release of the leukocytes in chronic myelogenous leukemia. Canadian Medical Association Journal 1966; 95: 511–521
  • Spiers A., Liew A., Baikie A. G. Neutrophil alkaline phosphatase score in chronic granulocytic leukaemia: effects of splenectomy and antileukaemic drugs. Journal of Clinical Pathology 1975; 28: 517–523
  • Bondue H., Machin D., Stryckmans P. A. The leucocyte alkaline phosphatase activity in mature neutrophils of different ages. Scandinavian Journal of Haematology 1980; 24: 51–56
  • Pedersen B., Hayhoe F. G. Cellular changes in chronic myeloid leukaemia. British Journal of Haematology 1971; 21: 251–256
  • Pedersen B., Hayhoe F. G. Relation between phagocytic activity and alkaline phosphatase content of neutrophils in chronic myeloid leukaemia. British Journal of Haematology 1971; 21: 257–260
  • Athens J. W., Raab S. O., Haab O. P., Boggs D. R., Ashenbrucker H., Cartwright G. E., Wintrobe M. M. Leukokinetic studies. X. Blood granulocyte kinetics in chronic myelocytic leukemia. Journal of Clinical Investigation 1965; 44: 765–777
  • Galbraith P. R., Abu-Zahra H. T. Granulopoiesis in chronic granulocytic leukaemia. British Journal of Haematology 1972; 22: 135–143
  • Rambaldi A., Terao M., Bettoni S., Bassan R., Battista R., Barbui T., Garattini E. Differences in the expression of alkaline phosphatase mRNA in chronic myelogenous leukemia and paroxysmal nocturnal hemoglobinuria polymorphonuclear leukocytes. Blood 1989; 73: 1113–1115
  • Nicholson-Weller A., March J. P., Rosenfeld S. I., Austen K. F. Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proceedings of the National Academy of Sciences of the United States of America 1983; 80: 5066–5070
  • Chow F. L., Telen M. J., Rosse W. F. The acetylcholinesterase defect in paroxysmal nocturnal hemoglobinuria: evidence that the enzyme is absent from the cell membrane. Blood 1985; 66: 940–945
  • Davitz M. A., Low M. G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. Journal of Experimental Medicine 1986; 163: 1150–1161
  • Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988; 333: 565–567
  • Tsuruta T., Tani K., Shimane M., Ozawa K, Takahashi S., Tsuchimoto D., Takahashi K., Nagata S., Sato N., Asano S. Effects of myeloid cell growth factors on alkaline phosphatase, myeloperoxidase, defensin and granulocyte colony-stimulating factor receptor mRNA expression in haemopoietic cells of normal individuals and myeloid disorders. British Journal of Haematology 1996; 92: 9–22
  • Rambaldi A., Terao M., Bettoni S., Tini M. L., Bassan R., Barbui T., Garattini E. Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony-stimulating factor. Blood 1990; 76: 2565–2571
  • Valentine W. N., Beck W. S. Biochemical studies on leucocyte: I. Phosphatase activity in health, leucocytosis, and myelocytic leukemia. Journal of Laboratory & Clinical Medicine 1951; 38: 39–55
  • Valentine W. N., Follette J. H., Hardin E. B., Beck W. S., Lawrence J. S. Studies on leukocyte alkaline phosphatase activity: Relation to “stress” and pituitary-adrenal activity. Journal of Laboratory & Clinical Medicine 1954; 44: 219–228
  • Valentine W. N., Follette J. H., Solomon D. H., Reynolds J. The relationship of leukocyte alkaline phosphatase to “stress,” to ACTH, and to adrenal 17-OH-corticosteroids. Journal of Laboratory & Clinical Medicine 1957; 49: 723–737
  • Kenny J. J., Moloney W. C. Leukocytic alkaline phosphatase: Behavior during prolonged incubation and infection in normal and leukemic leukocytes. Blood 1957; 12: 295–302
  • Rosen R. B., Teplitz R. L. Chronic granulocytic leukemia complicated by ulcerative colitis: Elevated leukocyte alkaline phosphatase and possible modifier gene deletion. Blood 1965; 26: 148–156
  • Perillie P. E. Studies of the changes in leukocyte alkaline phosphatase following pyrogen stimulation in chronic granulocytic leukemia. Blood 1967; 29: 401–406
  • Schiffer C. A., Aisner J., Daly P. A., Wiernik P. H. Increased leukocyte alkaline phosphatase activity following transfusion of leukocytes from a patient with chronic myelogenous leukemia. American Journal of Medicine 1979; 66: 519–522
  • Rustin G. J., Goldman J. M., McCarthy D., Mees S., Peters T. J. An extrinsic factor controls neutrophil alkaline phosphatase synthesis in chronic granulocytic leukaemia. British Journal of Haematology 1980; 45: 381–387
  • Sato N., Asano S., Urabe A., Ohsawa N., Takaku F. Induction of alkaline phosphatase in neutrophilic granulocytes, a marker of cell maturity, from bone marrow of normal individuals by retinoic acid. Biochemical & Biophysical Research Communications 1985; 131: 1181–1186
  • Sato N., Asano S., Ueyama Y., Mori M., Okabe T., Kondo Y., Ohsawa N., Kosaka K. Granulocytosis and colony-stimulating activity (CSA) produced by a human squamous cell carcinoma. Cancer 1979; 43: 605–610
  • Sato N., Asano S., Mori M., Ueyama Y., Sugano K., Ohsawa N., Takaku F. Characterization of neutrophil alkaline phosphatase-inducing factor (NAP-IF). Journal of Cellular Physiology 1985; 124: 255–260
  • Matsuo T. In vitro modulation of alkaline phosphatase activity in neutrophils from patients with chronic myelogenous leukemia by monocyte-derived activity. Blood 1986; 67: 492–497
  • Sato N., Asano S., Koelfler H. P., Yoshida S., Takaku F., Takatani O. Identification of neutrophil alkaline phosphatase-inducing factor in cystic fluid of a human squamous cell carcinoma as granulocyte colony-stimulating factor. Journal of Cellular Physiology 1988; 137: 272–276
  • Sato N., Mori M., Oshimura M., Ueyama Y., Miwa T., Ohsawa N., Kosaka K., Asano S. Factor(s) responsible for the increase in alkaline phosphatase activity of postmitotic granulocytes from normal individuals and patients with chronic myeloid leukemia. Blood 1982; 59: 141–147
  • Yuo A., Kitagawa S., Okabe T., Urabe A., Komatsu Y., Itoh S., Takaku F. Recombinant human granulocyte colony-stimulating factor repairs the abnormalities of neutrophils in patients with myelodysplastic syndromes and chronic myelogenous leukemia. Blood 1987; 70: 404–411
  • Sato N., Takatani O., Koeffler H. P., Sato H., Asano S., Takaku F. Modulation by retinoids and interferons of alkaline phosphatase activity in granulocytes induced by granulocyte colony-stimulating factor. Experimental Hematology 1989; 17: 258–262
  • Teshima T., Shibuya T., Harada M., Akashi K., Taniguchi S., Okamura T., Niho Y. Granulocyte-macrophage colony-stimulating factor suppresses induction of neutrophil alkaline phosphatase synthesis by granulocyte colony-stimulating factor. Experimental Hematology 1990; 18: 316–21
  • Mizukami H., Sato N. Retinoic acid acts to neutralize the inhibitory effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on alkaline phosphatase activity of neutrophils that is induced by granulocyte colony-stimulating factor (G-CSF). Experimental Hematology 1992; 20: 482–485
  • Sato N., Mizukami H., Tani K., Asano S., Takaku F. Regulation of alkaline phosphatase activity in neutrophilic granulocyte. Acta Haematologica Japonica 1990; 53: 1569–1576
  • Sato N., Mizukami H., Tani K., Asano S. Regulation of mRNA levels of alkaline phosphatase gene in neutrophilic granulocytes by granulocyte colony-stimulating factor and retinoic acid. European Journal of Haematology 1991; 46: 107–111
  • Taoka T., Yamaoka G., Arai T., Kiuchi H., Tanaka T., Takahara J., Kawanishi K., Irino S. Alkaline phosphatase activity in the human promyelocytic leukemia cell line, HL-60, induced by retinoic acid and recombinant human granulocyte colony-stimulating factor. Leukemia Research 1993; 17: 695–698
  • Gianni M., Terao M., Zanotta S., Barbui T., Rambaldi A., Garattini E. Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood 1909; 83, 1921
  • Steinman R. A., Tweardy D. J. Granulocyte colony-stimulating factor receptor mRNA upregulation is an immediate early marker of myeloid differentiation and exhibits dysfunctional regulation in leukemic cells. Blood 1994; 83: 119–127
  • Tsurumi H., Tojo A., Takahashi T., Moriwaki H., Asano S., Muto Y. The combined effects of all-trans retinoic acid and granulocyte colony-stimulating factor as a differentiation induction therapy for acute promyelocytic leukemia. Internal Medicine 1993; 32: 648–650
  • Imaizumi M., Sato A., Koizumi Y., Inoue S., Suzuki H., Suwabe N., Yoshinari M., Ichinohasama R., Endo K., Sawai T., et al. Potentiated maturation with a high proliferating activity of acute promyelocytic leukemia induced in vitro by granulocyte or granulocyte/macrophage colony-stimulating factors in combination with all-trans retinoic acid. Leukemia 1994; 8: 1301–1308
  • Gianni M., Li Calzi M., Terao M., Rambaldi A., Garattini E. Tyrosine kinases but not cAMP-dependent protein kinase mediate the induction of leukocyte alkaline phosphatase by granulocyte-colony-stimulating factor and retinoic acid in acute promyelocytic leukemia cells. Biochemical & Biophysical Research Communications 1995; 208: 846–854
  • Garattini E., Gianni M. Leukocyte alkaline phosphatase a specific marker for the post-mitotic neutrophilic granulocyte: regulation in acute promyelocytic leukemia. Leukemia & Lymphoma 1996; 23: 493–503
  • Usuki K., Nishizawa Y., Endo M., Osawa M., Kitazume K., Iki S., Watanabe M., Urabe A. Administration of granulocyte colony-stimulating factor during remission induction therapy with all-trans retinoic acid for acute promyelocytic leukemia. International Journal of Hematology 1996; 64: 213–219
  • Selsted M. E., Harwig S. S., Ganz T., Schilling J. W., Lehrer R. I. Primary structures of three human neutrophil defensins. Journal of Clinical Investigation 1985; 76: 1436–1439
  • Selsted M. E., Szklarek D., Lehrer R.I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infection & Immunity 1984; 45: 150–154
  • Lehrer R. I., Szklarek D., Ganz T., Selsted M. E. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infection & Immunity 1985; 49: 207–211
  • Lehrer R. I., Daher K., Ganz T., Selsted M. E. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. Journal of Virology 1985; 54: 467–472
  • Lichtenstein A., Ganz T., Selsted M. E., Lehrer R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 1986; 68: 1407–1410
  • Territo M. C., Ganz T., Selsted M. E., Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. Journal of Clinical Investigation 1989; 84: 2017–2020
  • Daher K. A., Lehrer R. I., Ganz T., Kronenberg M. Isolation and characterization of human defensin cDNA clones. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 7327–7331
  • Shiomi K., Nakazato M., Ihi T., Kangawa K, Matsuo H., Matsukura S. Establishment of radioimmunoassay for human neutrophil peptides and their increases in plasma and neutrophil in infection. Biochemical & Biophysical Research Communications 1993; 195: 1336–1344

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.