134
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Myeloperoxidase Gene Expression and Regulation by Myeloid Cell Growth Factors in Normal and Leukemic Cells

, , &
Pages 257-267 | Received 14 Apr 1998, Published online: 05 Aug 2009

References

  • Borregaard N. The human neutrophil. Function and dysfunction. European Journal of Haematology 1988; 41: 401–413
  • Lübbert M., Herrmann F., Koeffler H. P. Expression and regulation of myeloid-specific genes in normal and leukemic myeloid cells. Blood 1991; 77: 909–924
  • Austin G. E., Chan W. C., Zhao W., Racine M. Myeloperoxidase gene expression in normal granulopoiesis and acute leukemias. Leukemia & Lymphoma 1994; 15: 209–226
  • Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Journal of Experimental Medicine 1971; 134: 907–934
  • Miyajima A., Mui A. L., Ogorochi T., Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 1960; 82, 1974
  • Avalos B. R. Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood 1996; 88: 761–777
  • Bagley C. J., Woodcock J. M., Stomski F. C., Lopez A. F. The structural and functional basis of cytokine receptor activation: lessons from the common beta subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors. Blood 1997; 89: 1471–1482
  • Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. Journal of Bacteriology 1968; 95: 2131–2138
  • Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). New England Journal of Medicine 1978; 298: 659–668
  • Andrews P. C., Krinsky N. I. The reductive cleavage of myeloperoxidase in half, producing enzymically active hemi-myeloperoxidase. Journal of Biological Chemis-try 1981; 256: 4211–4218
  • Matheson N. R., Wong P. S., Travis J. Isolation and properties of human neutrophil myeloperoxidase. Biochemistry 1981; 20: 325–330
  • Andersen M. R., Atkin C. L., Eyre H. J. Intact form of myeloperoxidase from normal human neutrophils. Archives of Biochemistry & Biophysics 1982; 214: 273–283
  • Olsen R. L., Little C. Studies on the subunits of human myeloperoxidase. Biochemical Journal 1984; 222: 701–709
  • Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochemical Journal 1983; 209: 781–787
  • Atkin C. L., Andersen M. R., Eyre H. J. Abnormal neutrophil myeloperoxidase from a patient with chronic myelocytic leukemia. Archives of Biochemistry & Biophysics 1982; 214: 284–292
  • Weil S. C., Rosner G. L., Reid M. S., Chisholm R. L., Farber N. M., Spitznagel J. K., Swanson M. S. cDNA cloning of human myeloperoxidase: decrease in myeloperoxidase mRNA upon induction of HL-60 cells. Proceedings of the National Academy of Sciences of the United States of America 1987; 84: 2057–2061
  • Johnson K. R., Nauseef W. M., Care A., Wheelock M. J., Shane S., Hudson S., Koeffler H. P., Selsted M., Miller C., Rovera G. Characterization of cDNA clones for human myeloperoxidase: predicted amino acid sequence and evidence for multiple mRNA species. Nucleic Acids Research 1987; 15: 2013–2028
  • Morishita K., Kubota N., Asano S., Kaziro Y., Nagata S. Molecular cloning and characterization of cDNA for human myeloperoxidase. Journal of Biological Chemistry 1987; 262: 3844–3851
  • Chang K. S., Trujillo J. M., Cook R. G., Stass S. A. Human myeloperoxidase gene: molecular cloning and expression in leukemic cells. Blood 1986; 68: 1411–1414
  • Tobler A., Miller C. W., Johnson K. R., Selsted M. E., Rovera G., Koeffler H. P. Regulation of gene expression of myeloperoxidase during myeloid differentiation. Journal of Cellular Physiology 1988; 136: 215–225
  • Koeffler H. P., Ranyard J., Pertcheck M. Myeloperoxidase: its structure and expression during myeloid differentiation. Blood 1985; 65: 484–491
  • Kawaguchi R., Hosokawa Y., Komine A., Tsutsumi M., Hikiji K., Ishida-Okawara A., Suzuki K., Nakagawa T., Yamaguchi K. The monocytic cell line SKM-1 strongly expresses the myeloperoxidase gene. Leukemia 1992; 6: 1296–1301
  • Ferrari S., Tagliafico E., Ceccherelli G., Selleri L., Calabretta B., Donelli A., Temperani P., Sarti M., Sacchi S., Emilia G., et al. Expression of the myeloperoxidase gene in acute and chronic myeloid leukemias: relationship to the expression of cell cycle-related genes. Leukemia 1989; 3: 423–430
  • Zaki S. R., Austin G. E., Swan D., Srinivasan A., Ragab A. H., Chan W. C. Human myeloperoxidase gene expression in acute leukemia. Blood 1989; 74: 2096–2102
  • Chang K. S., Trujillo J. M., Pugh W. C., Freireich E. J., Stass S. A. Developmental and differential regulation of human MPO gene in leukemic cells. Leukemia 1990; 4: 497–501
  • Traweek S.T., Liu J., Braziel R. M., Johnson R. M., Byrnes R. K. Detection of myeloperoxidase gene expression in minimally differentiated acute myelogenous leukemia (AML-MO) using in situ hybridization. Diagnostic Molecular Pathology 1995; 4: 212–219
  • Ferrari S., Mariano M. T., Tagliafico E., Sarti M., Ceccherelli G., Selleri L., Merli F., Narni F., Donelli A., Torelli G., et al. Myeloperoxidase gene expression in blast cells with a lymphoid phenotype in cases of acute lymphoblastic leukemia. Blood 1988; 72: 873–876
  • Ferrari S., Ceccherelli G., Tagliafico E., Zucchini P., Manfredini R., Torelli G., Emilia G., Torelli U. Detection of low abundance mRNA of myeloid specific genes in cells of acute and chronic lymphoid leukemias by cRNA hybridization. Leukemia 1990; 4: 688–693
  • Zhou M., Findley H.W., Zaki S. R., Little F., Coffield L. M., Ragab A. H. Expression of myeloperoxidase mRNA by leukemic cells from childhood acute lymphoblastic leukemia. Leukemia 1993; 7: 1180–1183
  • Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proceedings of the National Academy of Sciences of the United States of America 1978; 75: 2458–2462
  • Huberman E., Callaham M. F. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proceedings of the National Academy of Sciences of the United States of America 1979; 76: 1293–1297
  • Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into mac-rophage-like cells when treated with a phorbol diester. Proceedings of the National Academy of Sciences of the United States of America 1979; 76: 2779–2783
  • Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proceedings of the National Academy of Sciences of the United States of America 1980; 77: 2936–2940
  • Collins S. J., Bodner A., Ting R., Gallo R. C. Induction of morphological and functional differentiation of human promyelocytic leukemia cells (HL-60) by componuds which induce differentiation of murine leukemia cells. International Journal of Cancer 1980; 25: 213–218
  • Yamada M., Kurahashi K. Regulation of myelop-eroxidase gene expression during differentiation of human myeloid leukemia HL-60 cells. Journal of Biological Chemistry 1984; 259: 3021–3025
  • Sagoh T., Yamada M. Transcriptional regulation of myeloperoxidase gene expression in myeloid leukemia HL-60 cells during differentiation into granulocytes and macrophages. Archives of Biochemistry & Biophysics 1988; 262: 599–604
  • Meier R. W., Chen T., Mathews S., Niklaus G., Tobler A. The differentiation pathway of HL60 cells is a model system for studying the specific regulation of some myeloid genes. Cell Growth & Differentiation 1992; 3: 663–669
  • Morishita K, Tsuchiya M., Asano S., Kaziro Y., Nagata S. Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulo-cyte colony-stimulating factor. Journal of Biological Chemistry 1987; 262: 15208–15213
  • Johnson K., Gemperlein I., Hudson S., Shane S., Rovera G. Complete nucleotide sequence of the human myeloperoxidase gene. Nucleic Acids Research 1989; 17: 7985–7986
  • Hashinaka K, Nishio C., Hur S. J., Sakiyama F., Tsunasawa S., Yamada M. Multiple species of myeloperoxidase messenger RNAs produced by alternative splicing and differential polyadenylation. Biochemistry 1988; 27: 5906–5914
  • Chang K. S., Schroeder W., Siciliano M. J., Thompson L. H., McCredie K., Beran M., Freireich E. J., Liang J. C., Trujillo J. M., Stass S. A. The localization of the human myeloperoxidase gene is in close proximity to the translocation breakpoint in acute promyelocytic leukemia. Leukemia 1987; 1: 458–462
  • van Tuinen P., Johnson K. R., Ledbetter S. A., Nussbaum R. L., Rovera G., Ledbetter D. H. Localization of myeloperoxidase to the long arm of human chromosome 17: relationship to the 15; 17 translocation of acute promyelocytic leukemia. Oncogene 1987; 1: 319–22
  • Weil S. C., Rosner G. L., Reid M. S., Chisholm R. L., Lemons R. S., Swanson M. S., Carrino J. J., Diaz M. O., Le Beau M. M. Translocation and rearrangement of myeloperoxidase gene in acute promyelocytic leukemia. Science 1988; 240: 790–792
  • Miller C. W., Rovera G., Venturelli D., Huebner K. F., van Tuinen P., Ledbetter D. H., Kitchingman G., Mirro J., Koeffler H. P. The myeloperoxidase gene in acute promyelocytic leukemia. Science 1989; 244: 823–824
  • Donti E., Longo L., Mengarelli A., Pandolfi P., Tabilio A., Nanni M., Alimena G., Avanzi G., Pegoraro L., Grignani F., Pelicci P. G. The myeloperoxidase gene in acute promyelocytic leukemia. Science 1989; 244: 824–825
  • Weil S. C., Reid M. S., Nilles L. A., Chisholm R. L., Rosner G. L., Swanson M. S., Carrino J. J., Diaz M. O., Le Beau M. M. The myeloperoxidase gene in acute promyelocytic leukemia. Science 1989; 244: 825–826
  • Longo L., Donti E., Mencarelli A., Avanzi G., Pegoraro L., Alimena G., Tabilio A., Venti G., Grignani F., Pelicci P. G. Mapping of chromosome 17 breakpoints in acute myeloid leukemias. Oncogene 1990; 5: 1557–1563
  • Ferrari S., Tagliafico E., Temperani P., Manfredini R., Ceccherelli G., Zucchini P., Tabilio A., Donelli A., Torelli G., Emilia G., et al. Overexpression of the MPO gene occurring in a case of APL without unusual geno-typic characteristics. Leukemia Research 1990; 14: 735–742
  • Jorgenson K.F., Antoun G. R., Zipf T. F. Chro-matin structural analysis of the 5′ end and contiguous flanking region of the myeloperoxidase gene. Blood 1991; 77: 159–164
  • Chang K. S., Zhao S. R., Wang Y. P., Lu J.F., Trujillo J. M., Stass S. A., Freireich E. J. Down regulation of myeloperoxidase gene associated with specific nuclease hypersensitive sites during TPA induced differentiation of HL-60. Leukemia 1991; 5: 205–209
  • Lübbert M., Miller C. W., Koelller H. P. Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood 1991; 78: 345–356
  • Hashinaka K., Yamada M. Undermethylation and DNase I hypersensitivity of myeloperoxidase gene in HL-60 cells before and after differentiation. Archives of Biochemistry & Biophysics 1992; 293: 40–45
  • Lübbert M., Oster W., Ludwig W. D., Ganser A., Mertelsmann R., Herrmann F. A switch toward demethy-lation is associated with the expression of myeloperoxidase in acute myeloblastic and promyelocytic leukemias. Blood 1992; 80: 2066–2073
  • Yamada M., Yoshida M., Hashinaka K. Identification of transcriptional cis-elements in introns 7 and 9 of the myeloperoxidase gene. Journal of Biological Chemistry 1993; 268: 13479–13485
  • Austin G. E., Zhao W. G., Zhang W., Austin E. D., Findley H. W., Murtagh J., Jr. Identification and characterization of the human myeloperoxidase promoter. Leukemia 1995; 9: 848–857
  • Zhao W. G., Regmi A., Austin E. D., Braun J. E., Racine M., Austin G. E. Cis-elements in the promoter region of the human myeloperoxidase (MPO) gene. Leukemia 1996; 10: 1089–1103
  • Austin G. E., Lam L., Zaki S. R., Chan W. C., Hodge T., Hou J., Swan D., Zhang W., Racine M., Whitsett C., et al. Sequence comparison of putative regulatory DNA of the 5′ flanking region of the myeloperoxidase gene in normal and leukemic bone marrow cells. Leukemia 1993; 7: 1445–1450
  • Piedrafita F. J., Molander R. B., Vansant G., Orlova E. A., Pfahl M., Reynolds W. F. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. Journal of Biological Chemistry 1996; 271: 14412–14420
  • Suzow J., Friedman A. D. The murine myeloperoxidase promoter contains several functional elements, one of which binds a cell type-restricted transcription factor, myeloid nuclear factor 1 (MyNF1). Molecular & Cellular Biology 1993; 13: 2141–2151
  • Nuchprayoon I., Meyers S., Scott L. M., Suzow J., Hiebert S., Friedman A. D. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxi-dase and neutrophil elastase genes in immature myeloid cells. Molecular & Cellular Biology 1994; 14: 5558–5568
  • Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 10431–10434
  • Nisson P. E., Watkins P. C., Sacchi N. Transcrip-tionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genetics & Cytogenetics 1992; 63: 81–88
  • Shimizu K., Miyoshi H., Kozu T., Nagata J., Enomoto K., Maseki N., Kaneko Y., Ohki M. Consistent disruption of the AML1 gene occurs within a single intron in the t(8;21) chromosomal translocation. Cancer Research 1992; 52: 6945–6948
  • Maseki N., Miyoshi H., Shimizu K., Homma C., Ohki M., Sakurai M., Kaneko Y. The 8;21 chromosome translocation in acute myeloid leukemia is always detectable by molecular analysis using AML1. Blood 1993; 81: 1573–1579
  • Erickson P., Gao J., Chang K. S., Look T., Whisenant E., Raimondi S., Lasher R., Trujillo J., Rowley J., Drabkin H. Identification of breakpoints in t(8;21) acute myel-ogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831
  • Miyoshi H., Kozu T., Shimizu K., Enomoto K., Maseki N., Kaneko Y., Kamada N., Ohki M. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1–MTG8 fusion transcript. Embo Journal 1993; 12: 2715–2721
  • Nucifora G., Birn D. J., Erickson P., Gao J., LeBeau M. M., Drabkin H. A., Rowley J. D. Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood 1993; 81: 883–888
  • Downing J. R., Head D. R., Curcio-Brint A. M., Hulshof M. G., Motroni T. A., Raimondi S. C., Carroll A. J., Drabkin H. A., Willman C., Theil K. S., et al. An AML1/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood 1993; 81: 2860–2865
  • Kozu T., Miyoshi H., Shimizu K., Maseki N., Kaneko Y., Asou H., Kamada N., Ohki M. Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood 1993; 82: 1270–1276
  • Meyers S., Downing J. R., Hiebert S. W. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Molecular & Cellular Biology 1993; 13: 6336–6345
  • Nucifora G., Begy C. R., Erickson P., Drabkin H. A., Rowley J. D. The 3;21 translocation in myelodyspla-sia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 7784–7788
  • Mitani K., Ogawa S., Tanaka T., Miyoshi H., Kurokawa M., Mano H., Yazaki Y., Ohki M., Hirai H. Generation of the AML1–EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. Embo Journal 1994; 13: 504–510
  • Liu P., Tarle S. A., Hajra A., Claxton D. F., Marlton P., Freedman M., Siciliano M. J., Collins F. S. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044
  • Valtieri M., Tweardy D. J., Caracciolo D., Johnson K., Mavilio F., Altmann S., Santoli D., Rovera G. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. Journal of Immunology 1987; 138: 3829–3835
  • Friedman A. D., Krieder B. L., Venturelli D., Rovera G. Transcriptional regulation of two mye-loid-specific genes, myeloperoxidase and lactoferrin, during differentiation of the murine cell line 32D C13. Blood 1991; 78: 2426–2432
  • Srivastava C. H., Rado T. A., Bauerle D., Broxmeyer H. E. Regulation of human bone marrow lactoferrin and myeloperoxidase gene expression by tumor necrosis factor-alpha. Journal of Immunology 1991; 146: 1014–1019
  • Kawano S., Tatsumi E., Yoneda N., Nagata S., Yamaguchi N. Suppression of gene expression of myeloperoxidase (MPO) by gamma-interferon (IFN-gamma) in HL60 cells. Lymphokine & Cytokine Research 1993; 12: 81–85
  • Berliner N., Hsing A., Graubert T., Sigurdsson F., Zain M., Bruno E., Hoffman R. Granulocyte colony-stimulating factor induction of normal human bone marrow progenitors results in neutrophil-specific gene expression. Blood 1995; 85: 799–803
  • Lübbert M., Brugger W., Mertelsmann R., Kanz L. Developmental regulation of myeloid gene expression and demethylation during ex vivo culture of peripheral blood progenitor cells. Blood 1996; 87: 447–455
  • Tsuruta T, Tani K, Shimane M., Ozawa K., Takahashi S., Tsuchimoto D., Takahashi K., Nagata S., Sato N., Asano S. Effects of myeloid cell growth factors on alkaline phosphatase, myeloperoxidase, defensin and granu-locyte colony-stimulating factor receptor mRNA expression in haemopoietic cells of normal individuals and myeloid disorders. British Journal of Haematology 1996; 92: 9–22
  • Fukunaga R., Ishizaka-Ikeda E., Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 1993; 74: 1079–87
  • Fukunaga R., Ishizaka-Ikeda E., Pan C. X., Seto Y., Nagata S. Functional domains of the granulocyte colony-stimulating factor receptor. Embo Journal 1991; 10: 2855–2865
  • Dong F., van Buitenen C., Pouwels K., Hoefsloot L. H., Lowenberg B., Touw I. P. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Molecular & Cellular Biology 1993; 13: 7774–7781
  • Ziegler S. F., Bird T. A., Morella K. K., Mosley B., Gearing D. P., Baumann H. Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Molecular & Cellular Biology 1993; 13: 2384–2390
  • Pan C. X., Fukunaga R., Yonehara S., Nagata S. Unidirectional cross-phosphorylation between the granulo-cyte colony-stimulating factor and interleukin 3 receptors. Journal of Biological Chemistry 1993; 268: 25818–25823
  • Yoshikawa A., Murakami H., Nagata S. Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor. Embo Journal 1995; 14: 5288–5296
  • Nicholson S. E., Oates A.C., Harpur A. G., Ziemiecki A., Wilks A. F., Layton J. E. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 2985–2988
  • Shimoda K., Iwasaki H., Okamura S., Ohno Y., Kubota A., Arima F., Otsuka T., Niho Y. G-CSF induces tyrosine phosphorylation of the JAK2 protein in the human myeloid G-CSF responsive and proliferative cells, but not in mature neutrophils. Biochemical & Biophysical Research Communications 1994; 203: 922–928
  • Tian S. S., Lamb P., Seidel H. M., Stein R. B., Rosen J. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 1994; 84: 1760–1764
  • Nicholson S. E., Novak U., Ziegler S. F., Layton J. E. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood 1995; 86: 3698–3704
  • Sadowski H. B., Shuai K., Darnell J., Jr., Gilman M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739–1744
  • Zhong Z., Wen Z., Darnell J., Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98
  • Darnell J., Jr., Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421
  • Tweardy D. J., Wright T. M., Ziegler S.F., Baumann H., Chakraborty A., White S. M., Dyer K. F., Rubin K. A. Granulocyte colony-stimulating factor rapidly activates a distinct STAT-like protein in normal myeloid cells. Blood 1995; 86: 4409–4416
  • Chakraborty A., White S. M., Schaefer T. S., Ball E. D., Dyer K. F., Tweardy D. J. Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood 1996; 88: 2442–2449
  • Kitamura T., Takaku F., Miyajima A. IL-1 up-regulates the expression of cytokine receptors on a factor-dependent human hemopoietic cell line, TF-1. International Immunology 1991; 3: 571–577
  • Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 8429–8433
  • Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell 1994; 76: 253–262
  • Mui A. L., Wakao H., O'Farrell A. M., Harada N., Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. Embo Journal 1995; 14: 1166–1175
  • Rosen R. L., Winestock K. D., Chen G., Liu X., Hennighausen L., Finbloom D. S. Granulocyte-macrophage colony-stimulating factor preferentially activates the 94–kD STAT5A and an 80–kD STAT5A isoform in human peripheral blood monocytes. Blood 1996; 88: 1206–1214
  • Rajotte D., Sadowski H. B., Haman A., Gopalbhai K., Meloche S., Liu L., Krystal G., Hoang T. Contribution of both STAT and SRF/TCF to c-fos promoter activation by granulocyte-macrophage colony-stimulating factor. Blood 1996; 88: 2906–2916
  • Brizzi M. F., Aronica M. G., Rosso A., Bagnara G. P., Yarden Y., Pegoraro L. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes. Journal of Biological Chemistry 1996; 271: 3562–3567
  • Weiss M., Yokoyama C., Shikama Y., Naugle C., Druker B., Sieff C. A. Human granulocyte-macrophage colony-stimulating factor receptor signal transduction requires the proximal cytoplasmic domains of the alpha and beta subunits. Blood 1993; 82: 3298–3306
  • Hanazono Y, Chiba S., Sasaki K., Mano H., Miyajima A., Arai K., Yazaki Y., Hirai H. c-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony-stimulating factor and interleukin-3. Embo Journal 1993; 12: 1641–1646
  • Quelle F. W., Sato N., Witthuhn B. A., Inhorn R. C., Eder M., Miyajima A., Griffin J. D., Ihle J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Molecular & Cellular Biology 1994; 14: 4335–4341
  • Woodcock J. M., Bagley C. J., Zacharakis B., Lopez A. F. A single tyrosine residue in the membrane-proximal domain of the granulocyte-macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 receptor common beta-chain is necessary and sufficient for high affinity binding and signaling by all three ligands. Journal of Biological Chemistry 1996; 271: 25999–26006
  • Shuai K., Halpern J., Ten Hoeve J., Rao X., Sawyers C. L. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.