199
Views
13
CrossRef citations to date
0
Altmetric
Research Article

MicroRNAs that affect prostate cancer: emphasis on prostate cancer in African Americans

, , &
Pages 410-424 | Published online: 01 Aug 2013

References

  • Abdelrahaman E, Raghavan S, Baker L, Weinrich M, Winters SJ (2005). Racial difference in circulating sex hormone-binding globulin levels in prepubertal boys. Metabolism 541: 91–96.
  • Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, Grezer U (2011). Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 32: 583–588.
  • Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RB, Croce CM (2008). Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68: 6162–6170.
  • Barnabas N, Xu L, Savera A, Hou Z, Barrack ER (2011). Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene. Prostate 718: 857–871.
  • Beilin J, Ball EM, Favaloro JM, Zajac JD (2000). Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J. Mol. Endocrinol. 251: 85–96.
  • Bennett CL, Price DK, Kim S, Liu D, Jovanovic BD, Nathan D, Johnson ME, Montgomery JS, Cude K, Brockbank JC, Sartor O, Figg WD (2002). Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J. Clin. Oncol. 2017: 3599–3604.
  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 96: 582–589.
  • Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 611: 857–866.
  • Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010). MicroRNa-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β. Molec. Cancer 9: 108
  • Carlsson J, Davidsson S, Helenius G, Karlsson M, Lubovac Z, Andrén O, Olsson B, Klinga-Levan K (2011). A miRNA expression signature that separates between normal and malignant prostate tissues. Cancer Cell Int. 11: 14.
  • Chamberlain NL, Driver ED, Miesfeld RL (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucl. Acids Res. 2215: 3181–3186.
  • Chan JM, Stampfer M J, Giovannucci E, Ma J, Pollak M (2000). Insulin-like growth factor I (IGF-I), IGF-binding protein-3 and prostate cancer risk: epidemiological studies. Growth Horm. IGF Res. 10, Suppl A: S32–33.
  • Chang TC, Zeitels LR, Hwang HW, chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl. Acad. Sci. USA 1069: 3384–3389.
  • Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, Tanaka Y, Dahhiya R (2011). MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev. Res. 4: 76–86
  • Cho WC (2007). OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6: 60.
  • Cui H, Grosso S, Schelter F, Mari B, Krüger A (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Front. Pharmacol. 3: 134.
  • De Miguel P, Royuela , Bethencourt R, Ruiz A, Fraile B, Paniagua R (1999). Immunohistochemical comparative analysis of transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates. Cytokine 119: 722–727.
  • DeLancey JO, Thun MJ, Jemal A, Ward EM (2008). Recent trends in black-white disparities in cancer mortality. Cancer Epidemiol. Biomarkers Prev. 1711: 2908–2912.
  • Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, Ge C, Yao J, Chen T, Wan D, Wang H, Gu J, Yao M, Li J, Tu H, He X (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12: 390–399.
  • Douglas DA, Zhong H, Ro JY, Oddoux C, Berger AD, Pincus MR, Satagopan JM, Gerald WL, Scher HI, Lee P, Osman I (2006). Novel mutations of epidermal growth factor receptor in localized prostate cancer. Front. Biosci. 11: 2518–2525.
  • Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009). ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol. Biol. Cell. 20: 2207–2217.
  • Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ (2009). miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J. Biol. Chem. 284: 24696–24704.
  • Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer. 64: 259–269.
  • Foliini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, Colecchia M, Supino R, Veneroni S, Salvioni R, Valdagni R, Daidone MG, Zaffarino N (2010). miR-21: an oncomir on strike in prostate cancer. Molec. Cancer 9: 12.
  • Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Argro E, Levine AJ, Melino G, Bernardidni S, Candi E (2012). DNA methylation silences miR-132 in prostate cancer. Oncogene 32: 127–134.
  • Fu X, Wang Q, Chen J, Huang X, Chen X, Cao L, Tan H, Li W, Zhang L, Bi J, Su Q, Chen L (2011). Clinical significance of miR-221 and its inverse correlation with p27Kip1 in hepatocellular carcinoma. Molec. Biol. Rept. 38: 3029–3035
  • Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008). Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 377: 114–119.
  • Gaston KE, Kim D, Singh S, Ford OH 3rd, Mohler JL (2003). Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol. 1703: 990–993.
  • Giwercman YL, Abramsson PA, Giwercman A, Gadaleanu V, Ahlgren G (2005). The 5 alpha-reductase type II A49T and V89L high-activity allelic variants are more common in men with prostate cancer compared with the general population. Eur. Urol. 484: 679–685.
  • Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L, Seth A (2011). miR-221 is down- regulated in TMPRSS2:ERG fusion-positive prostate cancer. Anticancer Res. 31: 403–410.
  • Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 687: 2479–2488.
  • Gregory PA, Bracken CP, Smith E, Berg AG, Wright JA, Roslan S, Morris M, Watt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Kew-Goodall Y, Goodall GJ. (2011). An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molec. Biol. Cell 22: 1686–1698.
  • Guo Y, Sigman DB, Borkowski A, Kyprianou N (2000). Racial differences in prostate cancer growth: apoptosis and cell proliferation in Caucasian and African-American patients. Prostate 422: 130–136.
  • Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT, Califano J, Wu TC, Pang X (2011). Enforced expression of miR-101 inhibits prostate cancer cell growth b modulating the COX-2 pathway in vivo. Cancer Prev. Res. 4: 1073–83.
  • Hatcher D, Daniels G, Osman I, Lee P (2009). Molecular mechanisms involving prostate cancer racial disparity. Am. J. Transl. Res. 13: 235–248.
  • Hernandez W, Grenade C, Santos ER, Bonilla C, Ahaghotu C, Kittles RA (2007). IGF-1 and IGFBP-3 gene variants influence on serum levels and prostate cancer risk in African-Americans. Carcinogenesis 2810: 2154–2159.
  • Howe EN, Cochrane DR, Richer JK (2012). The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J. Mam. Gland Biol. Neoplasia 17: 65–77.
  • Huang JC, Egger ME, Grizzle WE, McNally LR (2013). MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech & Histochem. 88: 397–402.
  • Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL, Clark SJ (2011). Discovery pipeline for epigenetically deregulated miRNAs in cancer integration of primary miRNA transcription. BMC Genom. 12: 54.
  • Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C, Qu W, Nair S, Horvath LG, Armstrong NJ, Kench JG, Sutherland RL, Clark SJ (2012). Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 6 August 2012; doi:10.1038/onc.2012.300
  • Hurst DR, Edmonds MD, Welch DR (2009). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 6919: 7495–7498.
  • Irvine RA, Yu MC, Ross RK, Coetzee GA (1995). The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 559: 1937–1940.
  • Jemal A, Siegel R, Xu J, Ward E (2010). Cancer statistics. CA Cancer J. Clin. 605: 277–300.
  • Jones J, Wang H, Zhou J, Hardy S, Turner T, Austin D, He Q, Wells A, Grizzle WE, Yates C (2012). Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. Am. J. Pathol. 181: 1836–1846.
  • Joseph MA, Wei JT, Harlow SD, Cooney KA, Dunn RL, Jaffe CA, Montie JE, Schottenfeld D (2002). Relationship of serum sex-steroid hormones and prostate volume in African American men. Prostate 534: 322–329.
  • Kim HG, Kassis J, Souto JC, Turner T, Wells A (1999). EGF receptor signaling in prostate morphogenesis and tumorigenesis. Histol. Histopathol. 144: 1175–1182.
  • Kojima K, Fujita Y, Nozawa Y, Deguchi T, Ito M (2010). miR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70: 101–1512.
  • Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, Fuse M, Ichikawa T, Naya Y, Nakagawa M, Seki N (2012). Tumour suppressors miR-1 and miR-132a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br. J. Cancer 106: 405–413.
  • Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH (2008). Platelet-derived growth factor-D overexpression contributes to epithelial mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26: 1425–1435.
  • Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HRC, Sarkar FH (2009). miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27: 1712–1721.
  • Kong D, Banerjee S, Ahmad A, Liu Y, Wang Z, Sethi S, Sarkar FH (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5:e12445. doi: 10.1371/journal.pone.0012445.
  • Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, Hwang C, Gupta N, Chiale D, Sakr WA, Menon M, Sarkar FH (2012). Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am. J. Transl. Res. 4: 14–23.
  • Korpal M, Lee ES, Hu G, Kang Y (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 28322: 14910–14914.
  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschi T, Manoharan M, Stoffel M (2005). Silencing of microRNAs in vivo with ‘antagomirs.‘Nature 438: doi:10.1038/nature04303
  • Kubricht WS III, Williams BJ, Whatley T, Pinckard P, Eastham JA (1999). Serum testosterone levels in African-American and white men undergoing prostate biopsy. Urology 546: 1035–1038.
  • Li H, Zhou J, Miki J, Furusato B, Gu Y, Srivastava S, McLeod DG, Vogel JC, Rhim JS (2008). Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells. Exp. Cell. Res. 3141: 92–102.
  • Li T, Li RS, Li YH, Zong S, Chen YY, Zhang CM, Hu MM, Shen ZJ (2012). miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J. Urol. 187: 1466–1472.
  • Li X, Huang Y, Fu X, Chen C, Zhang D, Yan L, Xie Y, Mao Y, Li Y (2011). Meta-analysis of three polymorphisms in the steroid-5-alpha-reductase, alpha polypeptide 2 gene (SRD5A2) and risk of prostate cancer. Mutagenesis 263: 371–383.
  • Li Y, Vandenboom II T G, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70: 1486–1495.
  • Lin SL, Chiang A, Chang D (2008). Loss of mir-16a function in hormone-refractory prostate cancer. RNA 14: 417–424.
  • Litman HJ, Bhasin S, Link CL, Araujo AB, McKinlay, JB (2006). Serum androgen levels in black, Hispanic, and white men. J. Clin. Endocrinol. Metab. 9111: 4326–4334.
  • Liu C, Kelnar K, Liu B, chen X, Calhoun-Davis T, Li H, Patrawala L, Yah H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011). Identification of miR-34a as a potent inhibitor of prostate cancer progenitor cells and metastasis by directly repressing CD44. Nat. Med. 17: 211–215.
  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2011). MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32: 772–778.
  • Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, Ling MT, Vielkind JR, Guan XY, Chan KW (2011). Micro-RNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factors pathway inhibitor TFPI-1. Cancer Res. 71: 583–592.
  • Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R (2012). miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin. Cancer Res. 19: 73–84.
  • McNally LR, Manne U, Grizzle W (2013). Post-transcriptional processing of genetic information and its relation to cancer. Biotech. & Histochem. In press.
  • Morissette J, Durocher F, Leblanc JF, Normand T, Labrie F, Simard J (1996). Genetic linkage mapping of the human steroid 5 alpha-reductase type 2 gene (SRD5A2) close to D2S352 on chromosome region 2p23–p22. Cytogenet. Cell Genet. 734: 304–307.
  • Myers RB, Srivastava S, Oelschlager DK, Grizzle WE (1994). Expression of p160erbB-3 and p185erbB-2 in Prostatic Intraepithelial Neoplasia and Prostatic Adenocarcinoma. J. Natl. Cancer Inst. 86: 1140–1145.
  • Myers RB, Lampejo O, Herrera GA, Srivastava S, Oelschlager D, Grizzle WE (1995). TGFα expression is a relatively late event in the progression of prostatic adenocarcinoma. J. Urol. Pathol. 3: 195–204.
  • Myers RB, Oelschlager DK, Coan PN, Frost AR, Weiss HL, Manne U, Pretlow TG, Grizzle WE (1999). Changes in cyclin dependent kinase inhibitors p21 and p27 during the castration induced regression of the CWR22 model of prostatic adenocarcinoma. J. Urol. 161: 945–949.
  • Nadiminty N, Lou WA, Sun M, Chen J, Yue J, Kung HJ, Evans CP, Zhou Q, Gao AC (2010). Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res. 708: 3309–3319.
  • Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX, Chen H, Zhang J, Chen X, Luo J, de Vere White RW, Kung HJ, Evans CP, Gao AC (2012). MicroRNA let-7C is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS ONE 7: e32832.
  • Noonan EJ, Place RF, Pookoot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009). MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28: 1714–1724
  • Östling P, Leivonon SK, Aakula A, Kohonen P, Makela R, Hagman Z, Edsjo A, Kangaspeska S, Edgren H, Nicorici D, Bjartell A, Ceder Y, Perala M, Kallioniemi O (2011). Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res. 715: 1956–1967.
  • Ozen M, Creighton CJ, Ozdemir M, Ittmann MZ (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788–93.
  • Paone A, Galli R, Fabbri M (2011). MicroRNAs as new characters in the plot between epigenetics and prostate cancer. Front. Genet. 2: 62 doi: 10.3389/fgene.2011.00062
  • Platz EA, Rimm EB, Willett WC, Kantoff PW, Giovannucci E (2000). Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. J. Natl. Cancer Inst. 9224: 2009–2017.
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007). MicroRNA expression profiling in prostate cancer. Cancer Res. 67: 6130.
  • Reis ST, Pontes-Junior J, Antunes AA, Dall’Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR, Nesrallah AJ, Piantino C, Srougi M, Leite KR (2012). miR-21 may act as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 12: 14.
  • Ribas J, Ni X, Haffner M, Wentzei EA, Salmasi AH, Chowdbury WH, Kudrolli TA, Yegnasubramanian S, Luo J, Rodriguez R, Mendell JT, Lupold SE (2009). MiR-21: an androgen receptor regulated microRNA which promotes hormone dependent and independent prostate cancer growth. Cancer Res. 69: 7165–7169.
  • Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012). Micro-RNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther. 11: 1166–1173.
  • Saini S, Majid S, Yamamura S, Tabatbai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R (2010). Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin. Cancer Res. 17: 5287–5298.
  • Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009). Epigenetic therapy upregulates the tumor suppressor microRNA-p126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun. 379: 726–731.
  • Sanderson M, Coker AL, Logan P, Zheng W, Fadden MK (2004). Lifestyle and prostate cancer among older African-American and Caucasian men in South Carolina. Cancer Causes Control 157: 647–655.
  • Sartor O, Zheng Q, Eastham JA (1999). Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 532: 378–380.
  • Sakurai T, Bilim VN, Ugolkov AV, Yuuki K, Tsukigi M, Motoyama T, Tomita Y (2012). The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR101 in renal cancer cells. Biophys. Res. Comm. 422: 607–614.
  • Shah MY, Calin GA (2011). MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 3:56 doi: 10.1186/gm272.
  • Shi GH, Ye DW, Yao WD, Zhang SL, Dai B, Zhang HL, Shen YJ, Zhu Y, Zhu XP, Xiao WJ, Ma CG (2010). Involvement of microRNA-21 in mediating chemoresistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol. Sin. 31: 867–873.
  • Shi WB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP Kung HJ, deVere White RW (2007). An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc. Natl. Scad. Sci. USA 104: 19983–19988.
  • Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, Devere White RW (2012). Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene doi: 10.1038/onc.2012.425
  • Shuch B, Mikhail M, Satagopan J, Lee P, Yee H, Chang C, Cordon-Cardo C, Taneja SS, Osman I (2004). Racial disparity of epidermal growth factor receptor expression in prostate cancer. J. Clin. Oncol. 2223: 4725–4729.
  • Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC (2011). MiR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int. J. Cancer 129: 810–819
  • Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI (2012). Chemoresistance in prostate cancer cells is regulated by miRNAs and hedgehog pathway. PLoS One 7: e40021.
  • Steele R, Mott JL, Ray RB (2010). MBP-1 upregulates miR-29b, which represses McI-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer 1: 381–387.
  • Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R (2011). MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32: 772–778.
  • Sun T, Wang Q, Balk S, Brown M, Lee GSM, Kantoff P (2009). The role of micro-RNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 69: 3356
  • Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, Settleman J, Johnson L (2012). Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 722: 527–536.
  • Szczyrba J, Löprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, Wullich B, Grässer F (2010). The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol. Cancer Res. 8: 529–538.
  • Thatai LC, Banerjee M, Lai Z, Vaishampayan U (2004). Racial disparity in clinical course and outcome of metastatic androgen-independent prostate cancer. Urology 644: 738–743.
  • Theodore S, Sharp S, Zhou J, Turner T, Li H, Miki J, Ji Y, Patel V, Yates C, Rhim JS (2010a). Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int. J. Oncol. 376: 1477–1482.
  • Theodore SC, Rhim JS, Turner T, Yates C (2010b). MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn. Dis. 201, Suppl 1: S1– 96–100.
  • Thomas LN, Douglas RC, Lazier CB, Too CK, Rittmaster RS, Tindall DJ (2008). Type 1 and type 2 5-alpha-reductase expression in the development and progression of prostate cancer. Eur. Urol. 532: 244–252.
  • Thomas LN, Douglas RC, Rittmaster RS, Too CK (2009). Overexpression of 5 alpha-reductase type 1 increases sensitivity of prostate cancer cells to low concentrations of testosterone. Prostate 696: 595–602.
  • Timofeeva OA, Zhang X, Ressom HW, Varghese RS, Kallakury BV, Wang K, Ji Y, Cheema A, Jung M, Brown ML, Rhim JS, Dritschilo A (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int. J. Oncol. 354: 751–760.
  • Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J, Nemunaitis J (2009). MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 16: 206–216.
  • Tricoli JV, Winter DL, Hanlon AL, Raysor SL, Watkins-Bruner D, Pinover WH, Hanks GE (1999). Racial differences in insulin-like growth factor binding protein-3 in men at increased risk of prostate cancer. Urology 541: 178–182.
  • Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, Muller PA, Dötsch V, Kehrloesser S, Sayan BS, Giaccone G, Lowe SW, Takahashi N, Vandenabell P, Knight RA, Levine AJ, Melino G (2012). Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc. Nat. Acad. Sci. USA 109: 15312–15317.
  • Turner T, Chen P, Goodly LJ, Wells A (1996). EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin. Exp. Metas. 144: 409–418.
  • Vandenabeele P, Knight RA, Levine AJ, Melino G (2012). Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc. Nat. Acad. Sci. USA 109: 15312–15317
  • Varambally S, Cao Q, Manu R-S, Shankar S, Wang X, Ateeg B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisam N, Maher CA, Chinnalyan AM (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: 1695–1699.
  • Volinia S, Calin GA, Chang-Gong L, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo CK, Ferracin M, Prueitt ARL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Nat. Acad. Sci. USA 103: 2257–2261.
  • Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW (2010). Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5: e8697.
  • Wallner LP, Clemens JQ, Sarma AV (2009). Prevalence of and risk factors for prostatitis in African American men: the Flint Men’s Health Study. Prostate 691: 24–32.
  • Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, Kallioniemi OP, Jenster G, Visakorpi T (2011). Androgen regulation of micro-RNAs in prostate cancer. Prostate 71: 604–614.
  • Watahiki A, Wang Y, Morris J, Dennis K, O’Dwyer HM, Gleave M, Gout PW, Wang Y (2011). MicroRNAs associated with metastatic prostate cancer. PLoS One 6: e24950.
  • Wei J-J, Wu X, Peng Y, Shi G, Basturk O, Yang X, Daniels G, Osman I, Ouyang J, Hernando E, Pellicer A, Rhim JS, Melamed J, Lee P (2011). Regulation of HMGA1 expression by MicroRNA-296 affects prostate cancer growth and invasion. Clin. Cancer Res. 17: 1297–1305.
  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell. Biol. 1112: 1487–1495.
  • Williams H, Powell IJ (2009). Epidemiology, pathology, and genetics of prostate cancer among African Americans compared with other ethnicities. Methods Mol. Biol. 472: 439–453.
  • Winters SJ, Brufsky A, Weissfeld J, Trump DL, Dyky MA, Hadeed V (2001). Testosterone, sex hormone-binding globulin, and body composition in young adult African American and Caucasian men. Metabolism 5010: 1242–1247.
  • Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, Li P, Niu W, Feng N, Zhang L, Hua L, Wang Z, Chen M (2012). MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate 72: 1171–1178
  • Yates C, Wells A, Turner T (2005). Luteinizing hormone-releasing hormone analogue reverses the cell adhesion profile of EGFR overexpressing DU-145 human prostate carcinoma subline. Br. J. Cancer 922: 366–375.
  • Yates CC, Shepard CR, Stolz DB, Wells A (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br. J. Cancer 968: 1246–1252.
  • Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, Majid S, Liu J, Khatri G, Tanaka Y, Dahlya R (2010). The functional significance of microRNA-145 in prostate cancer. Br. J. Cancer 103: 256–264.
  • Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, Zhu YP, Shen YJ, Shi GH, Ye DW (2011). Serum mi-RNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71: 326–331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.