659
Views
60
CrossRef citations to date
0
Altmetric
Research Article

Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model

, , , , , , & show all
Pages 67-75 | Received 11 Jan 2011, Accepted 06 Jun 2011, Published online: 08 Dec 2011

References

  • Araki T, Mikami T, Tanji H, Matsubara M, Imai Y, Mizugaki M, Itoyama Y. (2001). Biochemical and immunohistological changes in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse. Eur J Pharm Sci, 12, 231–238.
  • Black KJ, Carl JL, Hartlein JM, Warren SL, Hershey T, Perlmutter JS. (2003). Rapid intravenous loading of levodopa for human research: Clinical results. J Neurosci Methods, 127, 19–29.
  • Bigotte L. (1985). Doxorubicin as a fluorescent nuclear marker in tumors of the human nervous system: A simple and reliable staining technique. Clin Neuropathol, 4, 220–226.
  • Dai W, Yang T, Wang X, Wang J, Zhang X, Zhang Q. (2010). PHSCNK-Modified and doxorubicin-loaded liposomes as a dual targeting system to integrin-overexpressing tumor neovasculature and tumor cells. J Drug Target, 18, 254–263.
  • Dai X, Yue Z, Eccleston ME, Swartling J, Slater NK, Kaminski CF. (2008). Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomedicine, 4, 49–56.
  • DeBin JA, Strichartz GR. (1991). Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon, 29, 1403–1408.
  • de Boer AG, Gaillard PJ. (2007). Drug targeting to the brain. Annu Rev Pharmacol Toxicol, 47, 323–355.
  • Di Stefano A, Carafa M, Sozio P, Pinnen F, Braghiroli D, Orlando G, Cannazza G, Ricciutelli M, Marianecci C, Santucci E. (2004). Evaluation of rat striatal L-dopa and DA concentration after intraperitoneal administration of L-dopa prodrugs in liposomal formulations. J Control Release, 99, 293–300.
  • Di Stefano A, Sozio P, Iannitelli A, Marianecci C, Santucci E, Carafa M. (2006). Maleic- and fumaric-diamides of (O,O-diacetyl)-L-dopa-methylester as anti-Parkinson prodrugs in liposomal formulation. J Drug Target, 14, 652–661.
  • Düzgüne&scedil N, Nir S. (1999). Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev, 40, 3–18.
  • Fahn S, Przedborski S. (2005). Parkinsonism. In: Rowland LP, ed. Merritt’s Neurology, 10th ed. Philadelphia: Lippincott Williams & Wilkins, pp. 828–846.
  • Fahn S. (2006). Levodopa in the treatment of Parkinson’s disease. J Neural Transm Suppl, 71, 1–15.
  • Goole J, Amighi K. (2009). Levodopa delivery systems for the treatment of Parkinson’s disease: An overview. Int J Pharm, 380, 1–15.
  • Haran G, Cohen R, Bar LK, Barenholz Y. (1993). Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta, 1151, 201–215.
  • Jacoby DB, Dyskin E, Yalcin M, Kesavan K, Dahlberg W, Ratliff J, Johnson EW, Mousa SA. (2010). Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res, 30, 39–46.
  • Jankovic J. (2002). Levodopa strengths and weaknesses. Neurology, 58, S19–S32.
  • Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, Del Maestro R, Béliveau R. (1999). Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis, 17, 555–566.
  • Kesavan K, Ratliff J, Johnson EW, Dahlberg W, Asara JM, Misra P, Frangioni JV, Jacoby DB. (2010). Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J Biol Chem, 285, 4366–4374.
  • Kopin IJ, Markey SP. (1988). MPTP toxicity: Implications for research in Parkinson’s disease. Annu Rev Neurosci, 11, 81–96.
  • Lach B, Grimes D, Benoit B, Minkiewicz-Janda A. (1992). Caudate nucleus pathology in Parkinson’s disease: Ultrastructural and biochemical findings in biopsy material. Acta Neuropathol, 83, 352–360.
  • Leng A, Mura A, Hengerer B, Feldon J, Ferger B. (2004). Effects of blocking the dopamine biosynthesis and of neurotoxic dopamine depletion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on voluntary wheel running in mice. Behav Brain Res, 154, 375–383.
  • Lou J, Gasche Y, Zheng L, Critico B, Monso-Hinard C, Juillard P, Morel P, Buurman WA, Grau GE. (1998). Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria. Eur J Immunol, 28, 3989–4000.
  • Lyons SA, O’Neal J, Sontheimer H. (2002). Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 39, 162–173.
  • Miller GW, Staley JK, Heilman CJ, Perez JT, Mash DC, Rye DB, Levey AI. (1997). Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol, 41, 530–539.
  • Nagatsu T, Sawada M. (2009). L-dopa therapy for Parkinson’s disease: Past, present, and future. Parkinsonism Relat Disord, 15 (Suppl. 1), S3–S8.
  • Nowacek A, Kosloski LM, Gendelman HE. (2009). Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (Lond), 4, 541–555.
  • Oertel WH, Ellgring H. (1995). Parkinson’s disease–medical education and psychosocial aspects. Patient Educ Couns, 26, 71–79.
  • Pardridge WM. (2002). Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov, 1, 131–139.
  • Pardridge WM. (2007a). Blood-brain barrier delivery. Drug Discov Today, 12, 54–61.
  • Pardridge WM. (2007b). Drug targeting to the brain. Pharm Res, 24, 1733–1744.
  • Rozas G, López-Martín E, Guerra MJ, Labandeira-García JL. (1998). The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods, 83, 165–175.
  • Samad A, Sultana Y, Aqil M. (2007). Liposomal drug delivery systems: An update review. Curr Drug Deliv, 4, 297–305.
  • Schmidt N, Ferger B. (2001). Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm, 108, 1263–1282.
  • Shastry BS. (2001). Parkinson disease: Etiology, pathogenesis and future of gene therapy. Neurosci Res, 41, 5–12.
  • Sommer B, Barbieri S, Hofele K, Wiederhold K, Probst A, Mistl C, Danner S, Kauffmann S, Spooren W, Tolnay M, Bilbe G, van der Putten H, Kafmann S, Caromi P, Ruegg MA. (2000). Mouse models of alpha-synucleinopathy and Lewy pathology. Exp Gerontol, 35, 1389–1403.
  • Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM. (2007). Tumor paint: A chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res, 67, 6882–6888.
  • Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M. (2009). Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res, 69, 6200–6207.
  • Watanabe H, Muramatsu Y, Kurosaki R, Michimata M, Matsubara M, Imai Y, Araki T. (2004). Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: An immunohistological study. Eur Neuropsychopharmacol, 14, 93–104.
  • Xiong XB, Huang Y, Lu WL, Zhang H, Zhang X, Zhang Q. (2005). Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo. Pharm Res, 22, 933–939.
  • Xu YG, Pang XF, Gi JJ. (2006). The evaluation and method on several typical MPTP-induced mouse PD models. Prog Biochem Biophys, 33, 1014–1018.
  • Yang ZD, Zhang X, Guo H, Gan Y. (2006). Simultaneous determination of monoamines, their precursor amino acids and related metabolites in mice brain by high-performance liquid chromatography with a coulometric electrode array system. Anal Lett, 39, 1837–1851.
  • Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q. (2010). A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm, 7, 1159–1168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.