1,031
Views
40
CrossRef citations to date
0
Altmetric
Review Article

Molecular considerations for development of phage antibody libraries

, , &
Pages 195-208 | Received 28 Mar 2011, Accepted 04 Aug 2011, Published online: 27 Sep 2011

References

  • Anand NN, Mandal S, MacKenzie CR, Sadowska J, Sigurskjold B, Young NM, Bundle DR, Narang SA. (1991). Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J Biol Chem, 266, 21874–21879.
  • Azzazy HM, Highsmith WE Jr. (2002). Phage display technology: Clinical applications and recent innovations. Clin Biochem, 35, 425–445.
  • Baradaran B, Hosseini AZ, Majidi J, Farajnia S, Barar J, Saraf ZH, Abdolalizadeh J, Omidi Y. (2009). Development and characterization of monoclonal antibodies against human epidermal growth factor receptor in Balb/c mice. Hum Antibodies, 18, 11–16.
  • Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc Natl Acad Sci USA, 88, 7978–7982.
  • Bass S, Greene R, Wells JA. (1990). Hormone phage: An enrichment method for variant proteins with altered binding properties. Proteins, 8, 309–314.
  • Bedzyk WD, Weidner KM, Denzin LK, Johnson LS, Hardman KD, Pantoliano MW, Asel ED, Voss EW Jr. (1990). Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody. J Biol Chem, 265, 18615–18620.
  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M. (1988). Single-chain antigen-binding proteins. Science, 242, 423–426.
  • Bothmann H, Plückthun A. (1998). Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol, 16, 376–380.
  • Bradbury AR, Marks JD. (2004). Antibodies from phage antibody libraries. J Immunol Methods, 290, 29–49.
  • Carmen S, Jermutus L. (2002). Concepts in antibody phage display. Brief Funct Genomic Proteomic, 1, 189–203.
  • Chames P, Hoogenboom HR, Henderikx P. (2002). Selection of antibodies against biotinylated antigens. Methods Mol Biol, 178, 147–157.
  • Chappel JA, He M, Kang AS. (1998). Modulation of antibody display on M13 filamentous phage. J Immunol Methods, 221, 25–34.
  • Chasteen L, Ayriss J, Pavlik P, Bradbury AR. (2006). Eliminating helper phage from phage display. Nucleic Acids Res, 34, e145.
  • Chen X, Scala G, Quinto I, Liu W, Chun TW, Justement JS, Cohen OJ, vanCott TC, Iwanicki M, Lewis MG, Greenhouse J, Barry T, Venzon D, Fauci AS. (2001). Protection of rhesus macaques against disease progression from pathogenic SHIV-89.6PD by vaccination with phage-displayed HIV-1 epitopes. Nat Med, 7, 1225–1231.
  • Clackson T, Hoogenboom HR, Griffiths AD, Winter G. (1991). Making antibody fragments using phage display libraries. Nature, 352, 624–628.
  • Deshayes K, Schaffer ML, Skelton NJ, Nakamura GR, Kadkhodayan S, Sidhu SS. (2002). Rapid identification of small binding motifs with high-throughput phage display: Discovery of peptidic antagonists of IGF-1 function. Chem Biol, 9, 495–505.
  • Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD. (1999). Making artificial antibodies: A format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA, 96, 6025–6030.
  • Goenaga AL, Zhou Y, Legay C, Bougherara H, Huang L, Liu B, Drummond DC, Kirpotin DB, Auclair C, Marks JD, Poul MA. (2007). Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol, 44, 3777–3788.
  • Greenwood J, Willis AE, Perham RN. (1991). Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol, 220, 821–827.
  • Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J, 13, 3245–3260.
  • Hartley O. (2002). The use of phage display in the study of receptors and their ligands. J Recept Signal Transduct Res, 22, 373–392.
  • Healy JM, Murayama O, Maeda T, Yoshino K, Sekiguchi K, Kikuchi M. (1995). Peptide ligands for integrin α v β 3 selected from random phage display libraries. Biochemistry, 34, 3948–3955.
  • Hof D, Cheung K, Roossien HE, Pruijn GJ, Raats JM. (2006). A novel subtractive antibody phage display method to discover disease markers. Mol Cell Proteomics, 5, 245–255.
  • Holliger P, Prospero T, Winter G. (1993). “Diabodies”: Small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA, 90, 6444–6448.
  • Holton TA, Graham MW. (1991). A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res, 19, 1156.
  • Hoogenboom HR, Winter G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol, 227, 381–388.
  • Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. (1989). Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science, 246, 1275–1281.
  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. (1988). Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA, 85, 5879–5883.
  • Iannolo G, Minenkova O, Petruzzelli R, Cesareni G. (1995). Modifying filamentous phage capsid: Limits in the size of the major capsid protein. J Mol Biol, 248, 835–844.
  • Imai S, Mukai Y, Nagano K, Shibata H, Sugita T, Abe Y, Nomura T, Tsutsumi Y, Kamada H, Nakagawa S, Tsunoda S. (2006). Quality enhancement of the non-immune phage scFv library to isolate effective antibodies. Biol Pharm Bull, 29, 1325–1330.
  • Intasai N, Arooncharus P, Kasinrerk W, Tayapiwatana C. (2003). Construction of high-density display of CD147 ectodomain on VCSM13 phage via gpVIII: Effects of temperature, IPTG, and helper phage infection-period. Protein Expr Purif, 32, 323–331.
  • Janeway C, Traverse P, Walport M, Shlomchik M.. (2004). Immunobiology: The immune system in health and disease. New York: Garland Science.
  • Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE. (1995). Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (NY), 13, 378–382.
  • Johansen LK, Albrechtsen B, Andersen HW, Engberg J. (1995). pFab60: A new, efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng, 8, 1063–1067.
  • Kaufman DL, Evans GA. (1990). Restriction endonuclease cleavage at the termini of PCR products. BioTechniques, 9, 304–306.
  • Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol, 296, 57–86.
  • Knappik A, Krebber C, Plückthun A. (1993). The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology (NY), 11, 77–83.
  • Kramer RA, Cox F, van der Horst M, van der Oudenrijn S, Res PC, Bia J, Logtenberg T, de Kruif J. (2003). A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res, 31, e59.
  • Krebber A, Burmester J, Plückthun A. (1996). Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. Gene, 178, 71–74.
  • Kretzschmar T, Geiser M. (1995). Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage M13. Gene, 155, 61–65.
  • Little M, Welschof M, Braunagel M, Hermes I, Christ C, Keller A, Rohrbach P, Kürschner T, Schmidt S, Kleist C, Terness P. (1999). Generation of a large complex antibody library from multiple donors. J Immunol Methods, 231, 3–9.
  • Lowman HB, Bass SH, Simpson N, Wells JA. (1991). Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 30, 10832–10838.
  • Lu D, Jimenez X, Witte L, Zhu Z. (2004). The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochem Biophys Res Commun, 318, 507–513.
  • Malik P, Terry TD, Gowda LR, Langara A, Petukhov SA, Symmons MF, Welsh LC, Marvin DA, Perham RN. (1996). Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol, 260, 9–21.
  • Marchuk D, Drumm M, Saulino A, Collins FS. (1991). Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res, 19, 1154.
  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol, 222, 581–597.
  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ. (1990). Phage antibodies: Filamentous phage displaying antibody variable domains. Nature, 348, 552–554.
  • McGregor DP, Robins SP. (2001). External surface display of proteins linked to DNA-binding domains. Anal Biochem, 294, 108–117.
  • Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PA. (1997). Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol, 15, 772–777.
  • O’Connell D, Becerril B, Roy-Burman A, Daws M, Marks JD. (2002). Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol, 321, 49–56.
  • Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M. (2009). A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol, 9, 6.
  • Phipps ML, Xu X, Nock S, Kassner PD. (2000). Detection of antibody display phage without clearing of bacterial culture. BioTechniques, 29, 737, 739–737, 740.
  • Qin W, Zhao A, Han Y, Wen W, Li Y, Chen G, Zhang Z, Wang H. (2007). A novel technique for efficient construction of large scFv libraries. Mol Biotechnol, 37, 201–205.
  • Rakonjac J, Jovanovic G, Model P. (1997). Filamentous phage infection-mediated gene expression: Construction and propagation of the gIII deletion mutant helper phage R408d3. Gene, 198, 99–103.
  • Sblattero D, Bradbury A. (2000). Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol, 18, 75–80.
  • Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SDj, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR, Flack G, Griffin GJ, Hooks Y, Howat WJ, Kolb-Kokocinski A, Kunze S, Martin CD, Maslen GL, Mitchell JN, O’Sullivan M, Perera RL, Roake W, Shadbolt SP, Vincent KJ, Warford A, Wilson WE, Xie J, Young JL, McCafferty J. (2007). Application of phage display to high throughput antibody generation and characterization. Genome Biol, 8, R254.
  • Scott JK, Smith GP. (1990). Searching for peptide ligands with an epitope library. Science, 249, 386–390.
  • Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD, Lindqvist E. (1998). Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA, 95, 6157–6162.
  • Sidhu SS, Lowman HB, Cunningham BC, Wells JA. (2000). Phage display for selection of novel binding peptides. Meth Enzymol, 328, 333–363.
  • Smith GP. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.
  • Smith MW, Smith JW, Harris C, Brancale A, Allender CJ, Gumbleton M. (2007). Phage display identification of functional binding peptides against 4-acetamidophenol (Paracetamol): An exemplified approach to target low molecular weight organic molecules. Biochem Biophys Res Commun, 358, 285–291.
  • Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ. (2003). A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods, 274, 233–244.
  • Takkinen K, Laukkanen ML, Sizmann D, Alfthan K, Immonen T, Vanne L, Kaartinen M, Knowles JK, Teeri TT. (1991). An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli. Protein Eng, 4, 837–841.
  • Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol, 14, 309–314.
  • Wall JG, Plückthun A. (1995). Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6, 507–516.
  • Wang CI, Yang Q, Craik CS. (1995). Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J Biol Chem, 270, 12250–12256.
  • Wang LX, Ni J, Singh S, Li H. (2004). Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: Implications for HIV-1 vaccine design. Chem Biol, 11, 127–134.
  • Waterhouse P, Griffiths AD, Johnson KS, Winter G. (1993). Combinatorial infection and in vivo recombination: A strategy for making large phage antibody repertoires. Nucleic Acids Res, 21, 2265–2266.
  • Wilson DR, Finlay BB. (1998). Phage display: Applications, innovations, and issues in phage and host biology. Can J Microbiol, 44, 313–329.
  • Wu S, Ke A, Doudna JA. (2007). A fast and efficient procedure to produce scFvs specific for large macromolecular complexes. J Immunol Methods, 318, 95–101.
  • Yanisch-Perron C, Vieira J, Messing J. (1985). Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.