1,505
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Polymer microneedles for transdermal drug delivery

, &
Pages 211-223 | Received 20 Jul 2012, Accepted 15 Oct 2012, Published online: 20 Nov 2012

References

  • Ando HY, Ho NF, Higuchi WI. (1977). Skin as an active metabolizing barrier I: theoretical analysis of topical bioavailability. J Pharm Sci, 66, 1525–1528.
  • Aoyagi S, Izumi H, Fukuda M. (2008). Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sensor Actuat A-Phys, 143, 20–28.
  • Badran MM, Kuntsche J, Fahr A. (2009). Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci, 36, 511–523.
  • Banga AK. (2009). Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv, 6, 343–354.
  • Bodhale DW, Nisar A, Afzulpurkar N. (2009). Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid, 8, 373–392.
  • Boehm RD, Miller PR, Singh R, Shah A, Stafslien S, Daniels J, Narayan RJ. (2012). Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles. Biofabrication, 4, 011002.
  • Burton SA, Ng CY, Simmers R, Moeckly C, Brandwein D, Gilbert T, Johnson N, Brown K, Alston T, Prochnow G, Siebenaler K, Hansen K. (2011). Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res, 28, 31–40.
  • Chien YW, Vidal JE, Grijalva CG, Bozio C, Edwards KM, Williams JV, Griffin MR, Verastegui H, Hartinger SM, Gil AI, Lanata CF, Klugman KP. (2012). Density Interactions between Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in the Nasopharynx of Young Peruvian Children. Pediatr Infect Dis J. doi: 10.1097/INF.0b013e318270d850
  • Choi SO, Rajaraman S, Yoon YK, Wu X, Allen MG. (2006). 3-D patterned microstructures using inclined UV exposure and metal transfer micromolding. In: Solid-State Sensor, Actuator, and Microsystems Workshop. Hilton Head Island, SC: 348–351.
  • Choi CK, Kim JB, Jang EH, Youn YN, Ryu WH. (2012a). Curved biodegradable microneedles for vascular drug delivery. Small, 8, 2483–2488.
  • Choi HJ, Yoo DG, Bondy BJ, Quan FS, Compans RW, Kang SM, Prausnitz MR. (2012b). Stability of influenza vaccine coated onto microneedles. Biomaterials, 33, 3756–3769.
  • Chu LY, Choi SO, Prausnitz MR. (2010). Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci, 99, 4228–4238.
  • Chu LY, Prausnitz MR. (2011). Separable arrowhead microneedles. J Control Release, 149, 242–249.
  • Cleary GW. (2011). Microneedles for drug delivery. Pharm Res, 28, 1–6.
  • Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, Migalska K, Ryan E, Gillen D, Scott CJ, Woolfson AD. (2011). Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res, 28, 41–57.
  • Donnelly RF, Morrow DI, Fay F, Scott CJ, Abdelghany S, Singh RR, Garland MJ, Woolfson AD. (2010). Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis Photodyn Ther, 7, 222–231.
  • Donnelly RF, Morrow DI, Singh TR, Migalska K, McCarron PA, O’Mahony C, Woolfson AD. (2009). Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm, 35, 1242–1254.
  • Fabbrocini G, Fardella N, Monfrecola A, Proietti I, Innocenzi D. (2009). Acne scarring treatment using skin needling. Clin Exp Dermatol, 34, 874–879.
  • Ferrara LA, Fleischman AJ, Dunning JL, Zorman CA, Roy S. (2007). Effects of biomedical sterilization processes on performance characteristics of MEMS pressure sensors. Biomed Microdevices, 9, 809–814.
  • Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, Takada K. (2011). Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res, 28, 7–21.
  • Fukushima K, Satoh T, Baba S, Yamashita K. (2010). α1,2-Fucosylated and β-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology, 20, 452–460.
  • Fukushima K, Yamazaki T, Hasegawa R, Ito Y, Sugioka N, Takada K. (2010). Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol Ther, 12, 465–474.
  • Garland MJ, Caffarel-Salvador E, Migalska K, Woolfson AD, Donnelly RF. (2012a). Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery. J Control Release, 159, 52–59.
  • Garland MJ, Migalska K, Tuan-Mahmood TM, Raghu Raj Singh T, Majithija R, Caffarel-Salvador E, McCrudden CM, McCarthy HO, David Woolfson A, Donnelly RF. (2012b). Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int J Pharm, 434, 80–89.
  • Gittard SD, Ovsianikov A, Monteiro-Riviere NA, Lusk J, Morel P, Minghetti P, Lenardi C, Chichkov BN, Narayan RJ. (2009). Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J Diabetes Sci Technol, 3, 304–311.
  • Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ. (2010). Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv, 7, 513–533.
  • Gonzalez-Gonzalez E, Speaker TJ, Hickerson RP, Spitler R, Flores MA, Leake D, Contag CH, Kaspar RL. (2010). Silencing of reporter gene expression in skin using siRNAs and expression of plasmid DNA delivered by a soluble protrusion array device (PAD). Mol Ther, 18, 1667–1674.
  • Hauri AM, Armstrong GL, Hutin YJ. (2004). The global burden of disease attributable to contaminated injections given in health care settings. Int J STD AIDS, 15, 7–16.
  • Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. (2006a). Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci, 29, 82–88.
  • Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada K. (2006b). Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target, 14, 255–261.
  • Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. (2007a). Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice. J Drug Target, 15, 323–326.
  • Ito Y, Shiroyama K, Yoshimitsu J, Ohashi Y, Sugioka N, Takada K. (2007b). Pharmacokinetic and pharmacodynamic studies following percutaneous absorption of erythropoietin micropiles to rats. J Control Release, 121, 176–180.
  • Ito Y, Murakami A, Maeda T, Sugioka N, Takada K. (2008a). Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. Int J Pharm, 349, 124–129.
  • Ito Y, Ohashi Y, Saeki A, Sugioka N, Takada K. (2008b). Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs. Chem Pharm Bull, 56, 243–246.
  • Ito Y, Saeki A, Shiroyama K, Sugioka N, Takada K. (2008c). Percutaneous absorption of interferon-α by self-dissolving micropiles. J Drug Target, 16, 243–249.
  • Ito Y, Ise A, Sugioka N, Takada K. (2010a). Molecular weight dependence on bioavailability of FITC-dextran after administration of self-dissolving micropile to rat skin. Drug Dev Ind Pharm, 36, 845–851.
  • Ito Y, Maeda T, Fukushima K, Sugioka N, Takada K. (2010b). Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chem Pharm Bull, 58, 458–463.
  • Ito Y, Yamazaki T, Sugioka N, Takada K. (2010c). Self-dissolving micropile array tips for percutaneous administration of insulin. J Mater Sci Mater Med, 21, 835–841.
  • Ito Y, Kashiwara S, Fukushima K, Takada K. (2011a). Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Drug Dev Ind Pharm, 37, 1387–1393.
  • Ito Y, Murano H, Hamasaki N, Fukushima K, Takada K. (2011b). Incidence of low bioavailability of leuprolide acetate after percutaneous administration to rats by dissolving microneedles. Int J Pharm, 407, 126–131.
  • Ito Y, Yoshimura M, Tanaka T, Takada K. (2012). Effect of lipophilicity on the bioavailability of drugs after percutaneous administration by dissolving microneedles. J Pharm Sci, 101, 1145–1156.
  • Jin CY, Han MH, Lee SS, Choi YH. (2009). Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed Microdevices, 11, 1195–1203.
  • Kalluri H, Banga AK. (2011). Formation and closure of microchannels in skin following microporation. Pharm Res, 28, 82–94.
  • Katsumi H, Liu S, Tanaka Y, Hitomi K, Hayashi R, Hirai Y, Kusamori K, Quan YS, Kamiyama F, Sakane T, Yamamoto A. (2012). Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharm Sci, 101, 3230–3238.
  • Ke CJ, Lin YJ, Hu YC, Chiang WL, Chen KJ, Yang WC, Liu HL, Fu CC, Sung HW. (2012). Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials, 33, 5156–5165.
  • Khumpuang S, Horade M, Fujioka K, Sugiyama S. (2007). Geometrical strengthening and tip-sharpening of a microneedle array fabricated by X-ray lithography. Microsyst Technol, 13, 209–214.
  • Kim K, Kim H, Seo J. (2004). A neural network model with feature selection for Korean speech act classification. Int J Neural Syst, 14, 407–414.
  • Kim M, Jung B, Park JH. (2012a). Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials, 33, 668–678.
  • Kim SE, Lee JH, Kwon HB, Ahn BJ, Lee AY. (2011). Greater collagen deposition with the microneedle therapy system than with intense pulsed light. Dermatol Surg, 37, 336–341.
  • Kim YC, Kim SD, Kim KS. (2012b). A case of idiopathic central serous chorioretinopathy in a 12-year-old male treated with bevacizumab. Korean J Ophthalmol, 26, 391–393.
  • Kolli CS, Banga AK. (2008). Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res, 25, 104–113.
  • Kommareddy S, Baudner BC, Oh S, Kwon SY, Singh M, O’Hagan DT. (2012). Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci, 101, 1021–1027.
  • Kuo HC, Lin Y, Shen YK, Kang SC. (2011). Invasive PLA microneedle fabrication applied to drug delivery system. In: International conference on Mechanical Automation and Control Engineering. 7437–7440.
  • Lee JW, Park JH, Prausnitz MR. (2008). Dissolving microneedles for transdermal drug delivery. Biomaterials, 29, 2113–2124.
  • Lee K, Lee HC, Lee DS, Jung H. (2010). Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater Weinheim, 22, 483–486.
  • Lee JW, Choi SO, Felner EI, Prausnitz MR. (2011a). Dissolving microneedle patch for transdermal delivery of human growth hormone. Small, 7, 531–539.
  • Lee K, Kim JD, Lee CY, Her S, Jung H. (2011b). A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials, 32, 7705–7710.
  • Lee K, Lee CY, Jung H. (2011c). Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 32, 3134–3140.
  • Martin CJ, Allender CJ, Brain KR, Morrissey A, Birchall JC. (2012). Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release, 158, 93–101.
  • Matsuo K, Hirobe S, Yokota Y, Ayabe Y, Seto M, Quan YS, Kamiyama F, Tougan T, Horii T, Mukai Y, Okada N, Nakagawa S. (2012). Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J Control Release, 160, 495–501.
  • McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR. (2003). Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA, 100, 13755–13760.
  • Mcnally EJ, Hastedt JE. (2008). Protein Formulation and Delivery. New York, Informa Healthcare.
  • Migalska K, Morrow DI, Garland MJ, Thakur R, Woolfson AD, Donnelly RF. (2011). Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res, 28, 1919–1930.
  • Milewski M, Brogden NK, Stinchcomb AL. (2010). Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv, 7, 617–629.
  • Min J, Park JH, Yoon HH, Choy YB. (2008). Ultrasonic welding method to fabricate polymer microstructure encapsulating protein with minimum damage. Macromol Res, 16, 570–573.
  • Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, Hanada K. (2005). Sugar micro needles as transdermic drug delivery system. Biomed Microdevices, 7, 185–188.
  • Moon SJ, Lee SS. (2005). A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J Micromech Microeng, 15, 903.
  • Moon SJ, Lee SS, Lee H, Kwon T. (2005). Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol, 11, 311–318.
  • Naito S, Ito Y, Kiyohara T, Kataoka M, Ochiai M, Takada K. (2012). Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination. Vaccine, 30, 1191–1197.
  • Noh YW, Kim TH, Baek JS, Park HH, Lee SS, Han M, Shin SC, Cho CW. (2010). In vitro characterization of the invasiveness of polymer microneedle against skin. Int J Pharm, 397, 201–205.
  • Park JH, Prausnitz MR. (2010). Analysis of Mechanical Failure of Polymer Microneedles by Axial Force. J Korean Phys Soc, 56, 1223–1227.
  • Park JH, Allen MG, Prausnitz MR. (2005). Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release, 104, 51–66.
  • Park JH, Allen MG, Prausnitz MR. (2006). Polymer microneedles for controlled-release drug delivery. Pharm Res, 23, 1008–1019.
  • Park JH, Choi SO, Kamath R, Yoon YK, Allen MG, Prausnitz MR. (2007a). Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices, 9, 223–234.
  • Park JH, Yoon YK, Choi SO, Prausnitz MR, Allen MG. (2007b). Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng, 54, 903–913.
  • Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR. (2010). A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm, 76, 282–289.
  • Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. (2011). Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res, 28, 166–176.
  • Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJ, Kendall MA. (2010). Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small, 6, 1785–1793.
  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. (1996). An introduction to materials in medicine. Elsevier academic press.
  • Sammoura F, Kang JJ, Heo YM, Jung TS, Lin L. (2007). Polymeric microneedle fabrication using a microinjection molding technique. Microsyst Technol, 13, 517–522.
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, Murthy N, Compans RW, Skountzou I, Prausnitz MR. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nat Med, 16, 915–920.
  • Sullivan SP, Murthy N, Prausnitz MR. (2008). Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater, 20, 933.
  • Tozer TN, Rowland M. (2006). Introduction to pharmacokinetics and pharmacodynamics: the quantitative basis of drug therapy. Baltimore; London, Lippincott Williams & Wilkins.
  • van der Maaden K, Jiskoot W, Bouwstra J. (2012). Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release, 161, 645–655.
  • Wang MW, Jeng JH. (2009). Optimal molding parameter design of PLA micro lancet needles using the Taguchi method. Polym-Plast Technol, 48, 730–735.
  • Wang PC, Wester BA, Rajaraman S, Paik SJ, Kim SH, Allen MG. (2009). Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Conf Proc IEEE Eng Med Biol Soc, 2009, 7026–7029.
  • Wright WW, Carlos Baez J, Vanderkooi JM. (2002). Mixed trehalose/sucrose glasses used for protein incorporation as studied by infrared and optical spectroscopy. Anal Biochem, 307, 167–172.
  • Yoon YK, Park JH, Allen MG. (2006). Multidirectional UV lithography for complex 3-D MEMS structures. J Microelectromech S, 15, 1121–1130.
  • You SK, Noh YW, Park HH, Han M, Lee SS, Shin SC, Cho CW. (2010). Effect of applying modes of the polymer microneedle-roller on the permeation of L-ascorbic acid in rats. J Drug Target, 18, 15–20.
  • You XQ, Chang JH, Ju BK, Pak JJ. (2011). Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mat Sci Eng C, 31, 1632–1636.
  • Yung KL, Xu Y, Kang C, Liu H, Tam KF, Ko SM, Kwan FY, Lee TMH. (2012). Sharp tipped plastic hollow microneedle array by microinjection moulding. J Micromech Microeng, 22, 015016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.