756
Views
109
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model

, , &
Pages 300-311 | Received 13 Sep 2012, Accepted 05 Nov 2012, Published online: 11 Dec 2012

References

  • Abramov AY, Scorziello A, Duchen MR. (2007). Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci, 27, 1129–1138.
  • Akasofu S, Kosasa T, Kimura M, Kubota A. (2003). Protective effect of donepezil in a primary culture of rat cortical neurons exposed to oxygen-glucose deprivation. Eur J Pharmacol, 472, 57–63.
  • Augustinson KB. (1957). Assay methods for cholinesterase. In: Glick D, ed. Methods of biochemical analysis. New York: Interscience Publishers.
  • Bajad S, Singla AK, Bedi KL. (2002). Liquid chromatographic method for determination of piperine in rat plasma: application to pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci, 776, 245–249.
  • Beckman KB, Ames BN. (1998). The free radical theory of aging matures. Physiol Rev, 78, 547–581.
  • Bhat BG, Chandrasekhara N. (1986). Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology, 40, 83–92.
  • Bhat BG, Chandrasekhara N. (1987). Metabolic disposition of piperine in the rat. Toxicology, 44, 99–106.
  • Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. (2007). Solid lipid nanoparticles to improve brain drug delivery. Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH, Co. KGaA.
  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement, 3, 186–191.
  • Brown GC, Borutaite V. (2001). Nitric oxide, mitochondria, and cell death. IUBMB Life, 52, 189–195.
  • Bruce-Keller AJ, Begley JG, Fu W, Butterfield DA, Bredesen DE, Hutchins JB, Hensley K, Mattson MP. (1998). Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid β-peptide. J Neurochem, 70, 31–39.
  • Chang RC, Hudson PM, Wilson BC, Liu B, Abel H, Hong JS. (2000). High concentrations of extracellular potassium enhance bacterial endotoxin lipopolysaccharide-induced neurotoxicity in glia-neuron mixed cultures. Neuroscience, 97, 757–764.
  • Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. (2005). Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release, 108, 84–96.
  • Cui H, Kong Y, Zhang H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduction. DOI: 10.1155/2012/646354
  • Cutler NR, Sramek JJ. (1993). Tacrine in Alzheimer’s disease. N Engl J Med, 328, 808; author reply 809–808; author reply 810.
  • Davis K, Mohs R, Davis B, Levy M, Horvath T, Rosenberg G, editors. (1982). Cholinergic treatment in Alzheimer’s disease: Implications for future research. New York: Raven Press.
  • Epstein WW, Netz DF, Seidel JL. (1993). Isolation of piperine from black pepper. J Chem Educ, 70, 598–602.
  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. (2000). Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res, 42, 337–343.
  • Gao K, Jiang X. (2006). Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm, 310, 213–219.
  • Graf E, Mahoney JR, Bryant RG, Eaton JW. (1984). Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem, 259, 3620–3624.
  • Hashimoto K, Yaoi T, Koshiba H, Yoshida T, Maoka T, Fujiwara Y, Yamamoto Y, Mori K. (1996). Photochemical isomerization of piperine, a pungent constituent in pepper. Food Sci Tech Int, Tokyo, 2, 24–29.
  • Hyrc K, Handran SD, Rothman SM, Goldberg MP. (1997). Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J Neurosci, 17, 6669–6677.
  • Kakkar P, Das B, Viswanathan PN. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys, 21, 130–132.
  • Kar S. (2002). Role of amyloid β peptides in the regulation of central cholinergic function and its relevance to Alzheimer’s disease pathology. Drug Dev Res, 56, 248–263.
  • Kar S, Slowikowski SP, Westaway D, Mount HT. (2004). Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci, 29, 427–441.
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. (2008). Potential of solid lipid nanoparticles in brain targeting. J Control Release, 127, 97–109.
  • Kim JH, Hahm DH, Lee HJ, Pyun KH, Shim I. (2009). Acori graminei rhizoma ameliorated ibotenic acid-induced amnesia in rats. Evid Based Complement Alternat Med, 6, 457–464.
  • Konishi T. (2009). Brain oxidative stress as basic target of antioxidant traditional oriental medicines. Neurochem Res, 34, 711–716.
  • Kreuter J. (2004). Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol, 4, 484–488.
  • Kuppusamy P, Zweier JL. (1989). Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem, 264, 9880–9884.
  • Lehninger AL. (1968). The neuronal membrane. Proc Natl Acad Sci USA, 60, 1069–1080.
  • Li F, Calingasan NY, Yu F, Mauck WM, Toidze M, Almeida CG, Takahashi RH, Carlson GA, Flint Beal M, Lin MT, Gouras GK. (2004). Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem, 89, 1308–1312.
  • Lipinski B. (2011). Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev, 2011, 809696.
  • Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. (2003). Brain uptake of thiamine-coated nanoparticles. J Control Release, 93, 271–282.
  • Loveless VS, Surdock CP, Bhattacharjee H. (2010). Evaluation of zeta-potential and particle size of technetium 99mTc-sulfur colloid subsequent to the addition of lidocaine and sodium bicarbonate. J Nucl Med Technol, 38, 49–52.
  • Mann DM. (1983). The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech Ageing Dev, 23, 73–94.
  • Markesbery LMA. (2007). Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol, 64, 954–956.
  • Mattson MP, Chan SL, Duan W. (2002). Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev, 82, 637–672.
  • Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI. (2007). Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE, 2, e536.
  • Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A. (2002). Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol, 282, R985–R992.
  • Palmer AM, Francis PT, Benton JS, Sims NR, Mann DM, Neary D, Snowden JS, Bowen DM. (1987). Presynaptic serotonergic dysfunction in patients with Alzheimer’s disease. J Neurochem, 48, 8–15.
  • Raghavendra M, Maiti R, Kumar S, Acharya S. (2009). Role of Ocimum sanctum in the experimental model of Alzheimer’s disease in rats. Int J Green Pharm, 3, 6–15.
  • Roberson MR, Harrell LE. (1997). Cholinergic activity and amyloid precursor protein metabolism. Brain Res Brain Res Rev, 25, 50–69.
  • Schneider A, Moraru A, Krüger C, Laage R, Pitzer C. (2010). Use of Piperine and derivatives thereof for the therapy of neurological conditions. Heidelberg, DE: United States, SYNGIS Bioscience GmbH, Co. KG.
  • Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N. (2008). Hydrogen peroxide promotes A β production through JNK-dependent activation of γ-secretase. J Biol Chem, 283, 17721–17730.
  • Sheng M, Sabatini BL, Südhof TC. (2012). Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol, 4, a005777.
  • Skulachev VP. (1999). Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med, 20, 139–184.
  • Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M. (2005). β-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem, 92, 628–636.
  • Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, Muraca G, Danni O, Zhu X, Smith MA, Perry G, Jo DG, Mattson MP, Tabaton M. (2008). Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J Neurochem, 104, 683–695.
  • Uttara B, Singh AV, Zamboni P, Mahajan RT. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol, 7, 65–74.
  • Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, Worek F, Pietrzik CU, Kreuter J, von Briesen H. (2012). Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS ONE, 7, e32568.
  • Wang JX, Sun X, Zhang ZR. (2002). Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm, 54, 285–290.
  • Wang HY, Li W, Benedetti NJ, Lee DH. (2003). α 7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem, 278, 31547–31553.
  • Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K, Imaki H, Ma SY, Chauhan A, Chauhan V, Miller DL, Mehta PD, Flory M, Cohen IL, London E, Reisberg B, de Leon MJ, Wisniewski T. (2012). Abnormal intracellular accumulation and extracellular Aß deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS ONE, 7, e35414.
  • Weinstock M. (1995). The pharmacotherapy of Alzheimer’s disease based on the cholinergic hypothesis: an update. Neurodegeneration, 4, 349–356.
  • Winyard PG, Moody CJ, Jacob C. (2005). Oxidative activation of antioxidant defence. Trends Biochem Sci, 30, 453–461.
  • Wissing SA, Kayser O, Müller RH. (2004). Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev, 56, 1257–1272.
  • Wolfgang M, Karsten M. (2001). Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev, 47, 165–196.
  • Yusuf M, Khan RA, Khan M, Ahmed B. (2012). Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted ß-carotene nanoparticles. Int J Nanomedicine, 7, 4311–4321.
  • Zhu X, Su B, Wang X, Smith MA, Perry G. (2007). Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci, 64, 2202–2210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.