129
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells

, , , , , , , & show all
Pages 312-319 | Received 06 Sep 2012, Accepted 12 Nov 2012, Published online: 05 Apr 2013

References

  • Ai J, Li T, Li B, Xu Y, Li D, Liu Z, Wang E. (2012). In situ labeling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand. Anal Chim Acta, 741, 93–99.
  • Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. (2012). AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng, 109, 2920–2931.
  • Bianco A, Kostarelos K, Partidos CD, Prato M. (2005). Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb), 7, 571–577.
  • Blank M, Blind M. (2005). Aptamers as tools for target validation. Curr Opin Chem Biol, 9, 336–342.
  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 92, 7297–7301.
  • Cerchia L, Ducongé F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D. (2005). Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol, 3, e123.
  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. (2004). Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc, 126, 15638–15639.
  • Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. (2003). Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res, 31, 2097–2107.
  • Dapic V, Bates PJ, Trent JO, Rodger A, Thomas SD, Miller DM. (2002). Antiproliferative activity of G-quartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry, 41, 3676–3685.
  • Fabien M, Philippe B. (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther, 12(1), 107–114.
  • Fan P, Suri AK, Fiala R, Live D, Patel DJ. (1996). Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol, 258, 480–500.
  • Feng L, Chen Y, Ren J, Qu X. (2011). A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 32, 2930–2937.
  • Gao HL, Qian J, Cao SJ, Yang Z, Pang ZQ, Pan SQ, Fan L, Xi ZJ, Jiang XG, Zhang QZ. (2012). Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33, 5115–5123.
  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H. (2011). Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials, 32, 8010–8020.
  • Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W. (2009). Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem, 10, 862–868.
  • Jones D, Dobinson D, Doran B, Odumeru T, Shah K, Kuijper S, Green C, Courtenay-Luck N, McLaughlin F, Djeha H. (2008) AS1411, a novel anti-nucleolin aptamer, shows synergy with other anti-cancer drugs in vitro and in vivo in AML models. Am Assoc Cancer Res Ann Meet 99, 5689.
  • Shi Kam NW, Jessop TC, Wender PA, Dai H. (2004). Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc, 126, 6850–6851.
  • König K. (2000). Multiphoton microscopy in life sciences. J Microsc, 200, 83–104.
  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1, 50–56.
  • Markus D. (2012). G-quadruplexes: targets and tools in anticancer drug design. J Drug Target, 20(5), 389–400.
  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 56, 185–229.
  • Mongelard F, Bouvet P. (2007). Nucleolin: a multiFACeTed protein. Trends Cell Biol, 17, 80–86.
  • O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593–596.
  • Que-Gewirth NS, Sullenger BA. (2007). Gene therapy progress and prospects: RNA aptamers. Gene Ther, 14, 283–291.
  • Ritchie C, Doran B, Shah K, Djeha H, Dobinson D, Rowlinson-Busza G, Courtenay-Luck N, Green C, Jones D. (2007). Combination of the aptamer AS1411 with paclitaxel or Ara-C produces synergistic inhibition of cancer cell growth. Proc Am Assoc Cancer Res, 48, 4818.
  • Srivastava M, Pollard HB. (1999). Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J, 13, 1911–1922.
  • Stoltenburg R, Reinemann C, Strehlitz B. (2007). SELEX–a ®evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 24, 381–403.
  • Storck S, Shukla M, Dimitrov S, Bouvet P. (2007). Functions of the histone chaperone nucleolin in diseases. Subcell Biochem, 41, 125–144.
  • Sussman D, Nix JC, Wilson C. (2000). The structural basis for molecular recognition by the vitamin B 12 RNA aptamer. Nat Struct Biol, 7, 53–57.
  • Taghdisi SM, Abnous K, Mosaffa F, Behravan J. (2010). Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target, 18, 277–281.
  • Tatsuro W, Kazuya H, Atsushi T, Kensei Y, Masatoshi B, Hirota F, Masami S. (2010). Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull, 33(5), 796–803.
  • Trapani G, Denora N, Trapani A, Laquintana V. (2012). Recent advances in ligand targeted therapy. J Drug Target, 20, 1–22.
  • Ye X, Yang D. (2009). Recent advances in biological strategies for targeted drug delivery. Cardiovasc Hematol Disord Drug Targets, 9, 206–221.
  • Zhu L, Huo Z, Wang L, Tong X, Xiao Y, Ni K. (2009). Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int J Pharm, 370, 136–143.
  • Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W. (2010). Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem, 396, 73–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.