610
Views
22
CrossRef citations to date
0
Altmetric
Review

Polymersomes as an effective drug delivery system for glioma – a review

, , , , &
Pages 469-477 | Received 07 Feb 2014, Accepted 12 Apr 2014, Published online: 15 May 2014

References

  • Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212–36
  • Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011;32:8010–20
  • Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 2011;59:1190–9
  • Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1999;1:44–51
  • Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin 2007;25:867–90
  • Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97–109
  • Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 2011;12:495–508
  • Huang S, Li J, Han L, et al. Dual targeting effect of angiopep-2 modified DNA-loaded nanoparticles for glioma. Biomaterials 2011;32:6832–8
  • Silbergeld DL, Chicoine MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 1997;86:525–31
  • Lawson HC, Sampath P, Bohan E, et al. Interstitial chemotherapy for malignant gliomas; the Johns Hopkins experience. J Neurooncol 2007;83:61–70
  • Pardridge WM. Drug targeting to the brain. Pharm Res 2007;24:1733−44
  • Sing R, Jr Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215–23
  • Meng F, Engbers GH, Feijen J. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 2005;101:187–98
  • Zhou Y, Yan D. Real-time membrane fission of giant polymeric vesicles. Angew Chem Int Ed Engl 2005;44:3223–6
  • Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng 2006;8:323–41
  • Discher DE, Oritz V, Srinivas G, et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 2007;32:838–57
  • Meng F, Zhong Z, Feijen J. Stimuli–responsive polymersomes for programmed drug delivery. Biomacromolecules 2009;10:197–209
  • Li MH, Keller P. Stimuli–responsive polymeric vesicles. Soft Matter 2009;5:927–37
  • Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm 2009;71:463–74
  • Ahmed F, Pakunlu RI, Brannan A, et al. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumours, inducing apoptosis in proportion to accumulated drug. J Control Release 2006;116:150–8
  • Ahmed F, Pakunlu RI, Srinivas G, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 2006;3:340–50
  • Meng F, Zhong Z. Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J Phys Chem Lett 2011;2:1533–9
  • Antonietti M, Forster S. Vesicles and liposomes: a self-assembly principle beyond Lipids. Adv Mater 2003;15:1323–33
  • Discher BM, Hammer DA, Bates FS, Discher DE. Polymer vesicles in various media. Curr Opin Colloid Interface Sci 2000;5:125–31
  • Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science 1999;284:1143–6
  • Discher DE, Eisenberg A. Polymer vesicles. Science 2002;297:967–73
  • Kamat NP, Robbins GP, Rawson J, et al. A generalized system for photoresponsive membrane rupture in polymersomes. Adv Funct Mater 2010;20:2588–96
  • Katz JS, Levine DH, Davis KP, et al. Membrane stabilization of biodegradable polymersomes. Langmuir 2009;25:4429–34
  • Katz JS, Zhong S, Ricart BG, et al. Modular synthesis of biodegradable diblock copolymers for designing functional polymersomes. J Am Chem Soc 2010;132:3654–5
  • Robbins GP, Jimbo M, Swift J, et al. Photoinitiated destruction of composite porphyrin–protein polymersomes. J Am Chem Soc 2009;131:3872–4
  • Photos PJ, Bacakova L, Discher B, et al. Polymeric vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003;90:323–4
  • Jeon SI, Andrade JD. Protein surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interface Sci 1991;142:159–66
  • Ghoroghchian PP, Li GZ, Levine DH, et al. Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone. Macromolecules 2006;39:1673–5
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48–57
  • Beduneau A, Saulnier P, Benoit J. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67
  • Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: from basic understanding to drug delivery strategies. J Drug Target 2006;14:191–214
  • Bermudez H, Brannan AK, Hammer DA, et al. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002;35:8203–8
  • Li SL, Byrne B, Welsh J, Palmer AF. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog 2007;23:278–85
  • Checot F, Lecommandoux S, Klok HA, Gnanou Y. From supramolecular polymersomes to stimuli-responsive non-capsules based on poly (diene-b-peptide) diblock copolymers. Eur Phys J E 2003;10:25–35
  • Kukula H, Schlaad H, Antonietti M, Forster S. The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(l-glutamate) in dilute aqueous solution. J Am Chem Soc 2002;124:1658–63
  • Lecommandoux SB, Sandre O, Checot F, et al. Magnetic nanocomposite micelles and vesicles. Adv Mater 2005;17:712–18
  • Nardin C, Hirt T, Leukel J, Meier W. Polymerized ABA triblock copolymer vesicles. Langmuir 2000;16:1035–41
  • Nardin C, Thoeni S, Widmer J, et al. Nanaoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 2000;15:1433–4
  • Shen HW, Eisenberg A. Block length dependence of morphological phase diagram for a ternary system of block copolymers PS310-b-PAA52/dioxane/H2O. Phys Chem B 1999;103:9473–87
  • Shen HW, Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules 2000;33:2561–72
  • Kabanov AV, Bronich TK, Kabanov VA, et al. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J Am Chem Soc 1998;120:9941–2
  • Hales M, Barner-Kowollik C, Davis TP, Stenzel MH. Shell-cross-linked vesicles synthesized from block copolymers of poly (d,l-lactide) and poly (N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 2004;20:10809–17
  • Lee JS, Zhou W, Meng F, et al. Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J Control Release 2010;146:400–8
  • Chen W, Meng F, Cheng R, Zhong Z. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 2010;142:40–6
  • Checot F, Rodriguez-Hernandez J, Gnanou Y, Lecommandoux S. pH Responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers. Polym Adv Technol 2006;17:782–5
  • Gref R, Luck M, Quellec P, et al. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surf B Biointerfaces 2000;18:301–13
  • Kim P, Kim DH, Kim B, et al. Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 2005;16:2420–6
  • Huh KM, Cho YW, Par K. PLGA-PEG block copolymers for drug formulation. Drug Dev Deliv 2003;3. Available from: http://www.drug-dev.com/Main/Back-Issues/PLGAPEG-Block-Copolymers-for-Drug-Formulations-406.aspx [last accessed 6 May 2014]
  • Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J Control Release 2004;96:37–53
  • Napoli A, Tirelli N, Kilcher G, Hubbell JA. New synthetic methodologies for amphiphilic multiblock copolymers of ethylene glycol and propylene sulphide. Macromolecules 2001;34:8913–17
  • Napoli A, Tirelli N, Wehrli E, Hubbell JA. Lyotropic behavior in water of amphiphilic ABA triblock copolymers based on poly(propylene sulfide) and poly(ethylene glycol). Langmuir 2002;18:8324–9
  • Valentini M, Napoli A, Tirelli N, Hubbell JA. Precise determination of the hydrophobic/hydrophilic junction in polymeric vesicles. Langmuir 2003;19:4852–5
  • Sun J, Chen X, Deng C, et al. Direct formation of giant vesicles from synthetic polypeptides. Langmuir 2007;23:8308–15
  • Du J, O’Reilly RK. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009;5:3544–61
  • Massignani M, Loma H, Battaglia G. Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci 2010;229:115–54
  • Malinova V, Belegrinou S, Ouboter D, Meier W. Biomimetic block copolymer membranes. Polym Membr Biomembr 2010;224:113–65
  • Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. Biomimetic polymer vesicles-using concepts from polymer chemistry to mimic biomembranes. Polymer 2005;46:3540–63
  • Lopresti C, Lomas H, Massignani M, et al. Polymersomes: nature inspired nanometer sized compartments. J Mater Chem 2009;19:3576–90
  • Zhang L, Eisenberg A. Multiple morphologies of crew-cut aggregates of polysterene-b-poly (acrylic acid) block-copolymers. Science 1995;268:1728–31
  • Luo L, Eisenberg A. Thermodyanamic stabilization mechanism of block copolymer vesicles. J Am Chem Soc 2001;123:1012–13
  • Meng F, Hiemstra C, Engbers GHM, Feijen J. Biodegradable polymersomes. Macromolecules 2003;36:3004–6
  • Yu G, Eisenberg A. Multiple morphologies formed an amphiphilic ABC triblock copolymer in solution. Macromolecules 1998;31:5546–9
  • Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012;161:473–83
  • Gurny R, Peppas NA, Harrington DD, Banker GS. Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Dev Ind Pharm 1981;7:1–25
  • Sanchez A, Vila-Jato JL, Alonso MJ. Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A. Int J Pharm 1993;99:263–73
  • Plard JP, Bazile D. Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloids Surf B 1999;16:173–83
  • Zarnbaux MF, Bonneaux F, Gref R, et al. Influence of experimental parmeters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method. J Control Release 1998;50:31–40
  • Zhou S, Deng X, Yang H. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 2003;24:3563–70
  • Kim JH, Bae YH. Albumin loaded microsphere of amphiphilic poly(ethylene glycol)/poly(α-ester) multiblock copolymer. Eur J Pharm Sci 2004;23:245–51
  • Jia W, Gu Y, Gou M, et al. Preparation of biodegradable polycaprolcatone-poly(ethylene glycol)-polycaprolactone (PCEC) nanoparticles. Drug Deliv 2009;15:409–16
  • Sanson C, Schatz C, Le Meins JF, et al. Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(l-glutamic acid) polymersomes: size control and stability. Langmuir 2009;26:2751–60
  • Yildiz ME, Pruhomme RK, Robb I, Adamson DH. Formation and characterization of polymersomes made by a solvent injection method. Polym Adv Technol 2007;18:427–32
  • Robinson N. Molecular size and shape: a review of the light-scattering method applied to some important biological and other macromolecules. 2. J Pharm Pharmacol 1960;12:193–218
  • Nardin C, Winterhalter M, Meier W. Giant free-standing ABA triblock copolymer membranes. Langmuir 2000;16:7708–12
  • Sauer M, Haefele T, Graff A, et al. Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. Chem Commun 2001;23:2452–3
  • Sauer M, Meier W. Responsive nanocapsules. Chem Commun 2001;2:55–6
  • Lee JS, Ankone M, Pieters E, et al. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumour-bearing mice: comparison with stealth liposomes. J Control Release 2011;155:282–8
  • Lee JS, Groothuis T, Cusan C, et al. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials 2011;32:9144–53
  • Miyanishi T. Effects of zeta potential on flocculation measurement in microparticle systems. Tappi J 1995;78:135–50
  • Kim KT, Meeuwissen SA, Nolte RJM, Van Hest JCM. Smart nanocontainers and nanoreactors. Nanoscale 2010;2:844–58
  • Onaca O, Enea R, Hughes DW, Meier W. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 2009;9:129–39
  • Blanazs A, Armes SP, Ryan AJ. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 2009;30:267–77
  • Won YY, Davis HT, Bates FS. Giant worm like rubber micelles. Science 1999;283:960–3
  • Blattner P, Herzig HP, Dandliker R. Scanning near-field optical microscopy: transfer function and resolution limit. Opt Commun 1998;155:245–50
  • Clarke DR. Review – transmission scanning electron-microscopy. J Mater Sci 1973;8:279–85
  • Severs NJ. Freeze-fracture cyto-chemistry review of methods. J Electron Microsc Technol 1989;13:175–203
  • Wilson T, Sheppard CJR. Theory and practice of scanning optical microscopy. London: Academic Press; 1984
  • Patel DV, McGhee CN. Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin Exp Opthalmol 2007;35:71–88
  • Rawling S, Byatt J. How microscopy produces a sharper image. Biophotonics Int 2002;9:44–8
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nanotoday 2007;2:14–21
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 2005;64:2135–46
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147–62
  • Holm J, Hansen SI, Hoier-Madsen M, Bostad L. High-affinity folate binding in human choroid plexus. Characterization of radioligand binding, immunoreactivity, molecular heterogeneity and hydrophobic domain of the binding protein. Biochem J 1991;280:267–71
  • Kennedy MD, Jallad KN, Lu J, et al. Evaluation of folate conjugate uptake and transport by the choroid plexus of mice. Pharm Res 2003;20:714–19
  • Patrick TA, Kranz DM, van Dyke TA, Roy EJ. Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice. J Neurooncol 1997;32:111–23
  • Chen YC, Chiang CF, Chen LF, et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 2014;35:4066–81
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature 1984;312:162–3
  • Anabousi S, Bakowsky U, Schneider M, et al. In vitro assessment of transferring-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 2006;29:367–74
  • Pang Z, Gao H, Yu Y, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 2011;22:1171–80
  • Baker HM, Baker EN. Lactoferrin and iron; structural and dynamic aspects of binding and release. Biomaterials 2004;17:209–16
  • Ji B, Maeda J, Higuchi M, et al. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 2006;78:851–5
  • Pang Z, Feng L, Hua R, et al. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm 2010;7:1995–2005
  • Havrankova J, Brownstein M, Roth J. Insulin and insulin receptors in rodent brain. Diabetologia 1981;20:268–73
  • Gaillard PJ, Visser CC, De Boer AG. Targeted delivery across the blood–brain barrier. Expert Opin Drug Deliv 2005;2:299–309
  • Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine family of oncogenes. Nature 1985;313:756–61
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000;17:266–74
  • Wells A. Molecules in focus. EGFR receptor. Int J Biochem Cell Biol 1999;31:637–43
  • Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 1985;82:6497–501
  • Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999;11:84–189
  • Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996;15:2452–67
  • Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinoma may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 1999;96:4995–5000
  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997;16:1647–55
  • Shinojima N, Tada K, Siraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003;63:6962–70
  • Nave KA, Probstmeier R, Schachner M. Epidermal growth factor does not cross the blood–brain barrier. Cell Tissue Res 1985;241:453–7
  • Kurihara A, Pardridge WM. Imaging brain tumours by targeting peptide radiopharmaceuticals through the blood–brain barrier. Cancer Res 1999;59:6159–63
  • Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomedicine 2014;9:273–87
  • Bell RD, Sagare AP, Friedman AE, et al. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007;27:909–18
  • Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J Biol Chem 1999;274:7011–17
  • Demeule M, Poirier J, Jodoin J, et al. High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J Neurochem 2002;83:924–33
  • Pan W, Kastin AJ, Zankel TC, et al. Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J Cell Sci 2004;117:5071–8
  • Maletinska L, Blakely EA, Bjornstad KA, et al. Human glioblastoma cell lines: levels of low density lipoprotein receptor and low density lipoprotein receptor-related protein. Cancer Res 2000;60:2300–3
  • Yamamoto M, Ikeda K, Oshshima K, et al. Increased expression low density lipoprotein receptor-related protein/α2-macroglobulin receptor in human malignant astocytomas. Cancer Res 1997;57:2799–805
  • Bu G, Maksymovitch EA, Geuze H, Schwartz AL. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem 1994;269:29874–82
  • Xin H, Sha X, Jiang X, et al. The brain targeting mechanism of angiopep-conjugated poly (ethylene glycol)-co-poly (ε-caprolactone) nanoparticles. Biomaterials 2012;33:1673–81
  • Fabel K, Dietrich J, Hau P, et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 2001;92:1936–42
  • Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010;141:183–92
  • Zhang ZX, Wei XL, Zhang XY, Lu WY. P-hydrobenzoic acid (p-HA) modified polymeric micelles for brain-targeted docetaxel delivery. Chin Sci Bull 2013;58:2651–6
  • Zhang P, Hu L, Yin Q, et al. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release 2012;159:429–34
  • Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008;5:105–16
  • Kuo YC, Liang CT. Cationic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87mg cells. Colloids Surf B Biointerfaces 2011;85:131–7
  • Jiang X, Xin H, Sha X, et al. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 2011;420:385–94
  • Liu G, Mao J, Jiang Z, et al. Transferrin-modified doxorubicin-loaded biodegradable nanoparticles exhibit enhanced efficacy in treating brain glioma-bearing rats. Cancer Biother Radiopharm 2013;28:691–6
  • Upadhyay KK, Bhatt AN, Castro E, et al. In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol Biosci 2010;10:503–12
  • Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 2003;92:49–67
  • Antoni Z, Wojciech B. Epidermal growth factor receptor in glioblastoma. Folia Neuropathol 2005;43:123–32
  • Kuo YC, Liang CT. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011;32:3340–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.