723
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Role of polymer–drug conjugates in organ-specific delivery systems

, , , , , & show all
Pages 387-416 | Received 21 Oct 2014, Accepted 04 Feb 2015, Published online: 27 Feb 2015

References

  • Özgüney I. Conventional and novel pharmaceutical dosage forms on prevention of gastric ulcers. In: Choi J, ed. Peptic ulcer disease. Rijeka, Croatia: InTech; 2011:323–50
  • Kwon M, Yeom D, Kim NA, et al. Bioequivalence of tacrolimus formulations with different dynamic solubility and in-vitro dissolution profiles. Arch Pharm Res 2015;38:73–80
  • Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11:812–18
  • Rohini NA, Joseph A, Mukerji A. Polymeric prodrugs: recent achievements and general strategies. J Antivir Antiretrovir 2013;S15:1–12
  • Putnam D, Kopeček J. Polymer conjugates with anticancer activity. In: Peppas N, Langer R, eds. Biopolymers II. Berlin: Springer; 1995:55–123
  • Jatzkewitz H. Peptamin (glycyl-l-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z Naturforsch 1955;10:27–31
  • Duncan R, Gac-Breton S, Keane R, et al. Polymer–drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J Control Release 2001;74:135–46
  • Elvira C, Gallardo A, Roman J, Cifuentes A. Covalent polymer-drug conjugates. Molecules 2005;10:114–25
  • Vicent MJ, Ringsdorf H, Duncan R. Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 2009;61:1117–20
  • Lee E, Kim H, Lee I-H, Jon S. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. J Control Release 2009;140:79–85
  • Terwogt JMM, ten Bokkel Huinink WW, Schellens JH, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs 2001;12:315–23
  • Schoemaker N, Van Kesteren C, Rosing H, et al. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br J Cancer 2002;87:608–14
  • Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 2006;31:359–97
  • Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008;60:886–98
  • Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents – drug-polymer conjugates. Clin Cancer Res 1999;5:83–94
  • Sagnella S, Drummond C. Drug delivery: a nanomedicine approach. Aust Biochem 2012;43:5–8
  • Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L-A. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 2010;7:1387–98
  • Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 1999;4:449–56
  • Wong C, Stylianopoulos T, Cui J, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci USA 2011;108:2426–31
  • Canal F, Sanchis J, Vicent MJ. Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol 2011;22:894–900
  • Zhang XQ, Dahle CE, Weiner GJ, Salem AK. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J Pharm Sci 2007;96:3283–92
  • Kopeček J, Kopečková P, Minko T, et al. Water soluble polymers in tumor targeted delivery. J Control Release 2001;74:147–58
  • Friman S, Egestad B, Sjövall J, Svanvik J. Hepatic excretion and metabolism of polyethylene glycols and mannitol in the cat. J Hepatol 1993;17:48–55
  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009;71:445–62
  • Fox ME, Szoka FC, Fréchet JM. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 2009;42:1141–51
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136–51
  • Nojima Y, Suzuki Y, Yoshida K, et al. Lactoferrin conjugated with 40-kDa branched poly (ethylene glycol) has an improved circulating half-life. Pharm Res 2009;26:2125–32
  • Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 2000;17:991–8
  • Menjoge AR, Rinderknecht AL, Navath RS, et al. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. J Control Release 2011;150:326–38
  • Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 1996;14:1677–85
  • Zhao H, Rubio B, Sapra P, et al. Novel prodrugs of SN38 using multiarm poly (ethylene glycol) linkers. Bioconjug Chem 2008;19:849–59
  • Wendorf J, Chesko J, Kazzaz J, et al. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccines 2008;4:44–9
  • O'Hagan DT, Jeffery H, Davis S. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine 1993;11:965–9
  • Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm 2005;301:149–60
  • Nakaoka R, Inoue Y, Tabata Y, Ikada Y. Size effect on the antibody production induced by biodegradable microspheres containing antigen. Vaccine 1996;14:1251–6
  • Ruggiero A, Villa CH, Bander E, et al. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA 2010;107:12369–74
  • Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2:108–13
  • Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv 2012;9:367–94
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002;7:569–79
  • Doyle F, Dorski C, Harting J, Peppas N, eds. Control and modeling of drug delivery devices for the treatment of diabetes. Proceedings of the 1995 IEEE American Control Conference; 1995; Seattle, WA
  • Heller J, Chang A, Rood G, Grodsky G. Release of insulin from pH-sensitive poly (ortho esters). J Control Release 1990;13:295–302
  • Park SY, Bae YH. Novel pH-sensitive polymers containing sulfonamide groups. Macromol Rapid Commun 1999;20:269–73
  • Filipcsei G, Feher J, Zrínyi M. Electric field sensitive neutral polymer gels. J Mol Struct 2000;554:109–17
  • De P, Gondi SR, Sumerlin BS. Folate-conjugated thermoresponsive block copolymers: highly efficient conjugation and solution self-assembly. Biomacromolecules 2008;9:1064–70
  • Zhang X, Zhuo R, Yang Y. Using mixed solvent to synthesize temperature sensitive poly (N-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials 2002;23:1313–18
  • Chen J, Zhou R, Li L, et al. Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules 2013;18:12415–25
  • Hoffman AS, Stayton PS, Bulmus V, et al. Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 2000;52:577–86
  • Cho SH, Jhon MS, Yuk SH, Lee HB. Temperature-induced phase transition of poly (N, N-dimethylaminoethyl methacrylate-co-acrylamide). J Polym Sci B Polym Phys 1997;35:595–8
  • Aoki T, Muramatsu M, Torii T, et al. Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules 2001;34:3118–19
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321–39
  • Kim S, Kim J-H, Jeon O, et al. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 2009;71:420–30
  • Mathiowitz E, Jacob JS, Jong YS, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997;386:410–14
  • Cohen S, Yoshioka T, Lucarelli M, et al. Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres. Pharm Res 1991;8:713–20
  • Shenoy D, Little S, Langer R, Amiji M. Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 2005;22:2107–14
  • Kovář M, Kovář L, Šubr V, et al. HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. J Control Release 2004;99:301–14
  • Jeong SH, Oh KT, Park K. Glucose-sensitive hydrogels. In: Dumitriu S, Popa V, eds. Polymeric biomaterials, medicinal and pharmaceutical applications of polymers. Vol. 2. CRC Press; 2013;2:43–64
  • Klumb LA, Horbett TA. Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 1992;18:59–80
  • Cartier S, Horbett T, Ratner B. Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. J Membr Sci 1995;106:17–24
  • Ito Y, Casolaro M, Kono K, Imanishi Y. An insulin-releasing system that is responsive to glucose. J Control Release 1989;10:195–203
  • Goldraich M, Kost J. Glucose-sensitive polymeric matrices for controlled drug delivery. Clin Mater 1993;13:135–42
  • Mahajan A, Aggarwal G. Smart polymers: innovations in novel drug delivery. Int J Drug Dev Res 2011;3:16–30
  • El Khoury JM, Zhou X, Qu L, et al. Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods. Chem Commun 2009;2:2109–11
  • Gomy C, Schmitzer AR. Synthesis and photoresponsive properties of a molecularly imprinted polymer. Org Lett 2007;9:3865–8
  • Fang L, Chen S, Zhang Y, Zhang H. Azobenzene-containing molecularly imprinted polymer microspheres with photoresponsive template binding properties. J Mater Chem 2011;21:2320–9
  • Mallapragada S, Anderson B, eds. Design and synthesis of novel pH and temperature sensitive copolymers for injectable delivery. Proceedings of the IEEE Second Joint Engineering in Medicine and Biology, 2002 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference; 2002
  • Gan L, Gan Y, Deen GR. Poly (N-acryloyl-N′-propylpiperazine): a new stimuli-responsive polymer. Macromolecules 2000;33:7893–7
  • González N, Elvira C, San Román J. Hydrophilic and hydrophobic copolymer systems based on acrylic derivatives of pyrrolidone and pyrrolidine. J Polym Sci A Polym Chem 2003;41:395–407
  • Matsumoto S, Christie RJ, Nishiyama N, et al. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 2008;10:119–27
  • Chen J, Chen Y, Li H, et al. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrason Sonochem 2010;17:66–71
  • Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans Multinational J 1989;18:143–211
  • Zrinyi M, Barsi L, Büki A. Direct observation of discrete and reversible shape transition in magnetic field sensitive polymer gels. US Patent US20110127627 A1 2005;1–6
  • Schwartz BJ. Conjugated polymers: what makes a chromophore? Nat Mater 2008;7:427–8
  • Rivaton A, Mailhot B, Soulestin J, et al. Influence of the chemical structure of polycarbonates on the contribution of crosslinking and chain scissions to the photothermal ageing. Eur Polym J 2002;38:1349–63
  • Hoch U, Masuoka L, Maslyar D, Von Hoff D. 8015 NKTR-102 demonstrates nonclinical and phase 1 clinical anti-tumor activity in ovarian cancer. Eur J Cancer Suppl 2009;7:454
  • Tang X, Zhang P, Ye H, et al. Water-soluble gambogic acid PEGylated prodrugs: synthesis, characterization, physicochemical properties and in vitro hydrolysis. Pharmazie 2008;63:711–17
  • Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 2006;307:77–82
  • Anbharasi V, Cao N, Feng SS. Doxorubicin conjugated to D-α-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. J Biomed Mater Res A 2010;94:730–43
  • Guiotto A, Canevari M, Orsolini P, et al. Efficient and chemoselective N-acylation of 10-amino-7-ethyl camptothecin with poly (ethylene glycol). Bioorg Med Chem Lett 2004;14:1803–5
  • Marcus Y, Sasson K, Fridkin M, Shechter Y. Turning low-molecular-weight drugs into prolonged acting prodrugs by reversible pegylation: a study with gentamicin. J Med Chem 2008;51:4300–5
  • Sedlák M, Pravda M, Staud F, et al. Synthesis of pH-sensitive amphotericin B–poly (ethylene glycol) conjugates and study of their controlled release in vitro. Bioorg Med Chem 2007;15:4069–76
  • Chung Y, Cho H. Preparation of highly water soluble tacrolimus derivatives: poly (ethylene glycol) esters as potential prodrugs. Arch Pharm Res 2004;27:878–83
  • Zacchigna M, Di Luca G, Maurich V, Boccù E. Syntheses, chemical and enzymatic stability of new poly (ethylene glycol)–acyclovir prodrugs. Il Farmaco 2002;57:207–14
  • Li J, Wang Y, Yang C, et al. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 2009;76:81–90
  • Kopchick J, Parkinson C, Stevens E, Trainer PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev 2002;23:623–46
  • Webster R, Xie R, Didier E, et al. PEGylation of somatropin (recombinant human growth hormone): impact on its clearance in humans. Xenobiotica 2008;38:1340–51
  • Qiu H, Boudanova E, Park A, et al. Site-specific PEGylation of human thyroid stimulating hormone to prolong duration of action. Bioconjug Chem 2013;24:408–18
  • Youn YS, Jung JY, Oh SH, et al. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release 2006;114:334–42
  • Cox GN, Rosendahl MS, Chlipala EA, et al. A long-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 2007;148:1590–7
  • Shi X, Shi Z, Huang H, et al. PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl Microbiol Biotechnol 2013;97:10025–33
  • Tian H, Guo Y, Gao X, Yao W. PEGylation enhancement of pH stability of uricase via inhibitive tetramer dissociation. J Pharm Pharmacol 2013;65:53–63
  • El-Sayed AS, Ibrahim H, Sitohy MZ. Co-immobilization of PEGylated Aspergillus flavipes l-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium. Enzyme Microb Technol 2014;54:59–69
  • Izzo F, Montella M, Orlando AP, et al. Pegylated arginine deiminase lowers hepatitis C viral titers and inhibits nitric oxide synthesis. J Gastroenterol Hepatol 2007;22:86–91
  • Charlab R, Rowton ED, Ribeiro J. The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis. Exp Parasitol 2000;95:45–53
  • Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 2006;1:241–54
  • Grace MJ, Cutler DL, Bordens RW. Pegylated IFNs for chronic hepatitis C: an update. Expert Opin Drug Deliv 2005;2:219–26
  • Russell-Jones R, Acland K. Sentinel node biopsy in the management of malignant melanoma. Clin Exp Dermatol 2001;26:463–8
  • Baker DP, Lin EY, Lin K, et al. N-terminally PEGylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug Chem 2006;17:179–88
  • Tsutsumi Y, Kihira T, Tsunoda S-I, et al. Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. J Control Release 1995;33:447–51
  • Yamamoto Y, Tsutsumi Y, Yoshioka Y, et al. Site-specific PEGylation of a lysine-deficient TNF-α with full bioactivity. Nat Biotechnol 2003;21:546–52
  • Ducreux J, Tyteca D, Ucakar B, et al. PEGylation of anti-sialoadhesin monoclonal antibodies enhances their inhibitory potencies without impairing endocytosis in mouse peritoneal macrophages. Bioconjug Chem 2009;20:295–303
  • Bourne T, Fossati G, Nesbitt A. A PEGylated Fab-fragment against tumor necrosis factor for the treatment of Crohn disease. BioDrugs 2008;22:331–7
  • Kaushik V, Moots R. CDP-870 (certolizumab) in rheumatoid arthritis. Expert Opin Biol Ther 2005;5:601–6
  • Khalili H, Godwin A, Choi J-W, et al. Fab-PEG-Fab as a potential antibody mimetic. Bioconjug Chem 2013;24:1870–82
  • Baka S, Clamp AR, Jayson GC. A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 2006;10:867–76
  • Ogris M, Brunner S, Schüller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999;6:595–605
  • Floege J, Ostendorf T, Janssen U, et al. Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol 1999;154:169–79
  • Ng EW, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006;5:123–32
  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001;46:169–85
  • Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Technol Today 1999;2:441–9
  • Gallardo A, Román JS. Synthesis and characterization of a new poly (methacrylamide) bearing side groups of biomedical interest. Polymer 1993;34:394–400
  • Rodri G, Gallardo A, San Roma J, et al. New resorbable polymeric systems with antithrombogenic activity. J Mater Sci Mater Med 1999;10:873–8
  • Lu Y, Chau M, Boyle A, et al. Effect of pendant group structure on the hydrolytic stability of polyaspartamide polymers under physiological conditions. Biomacromolecules 2012;13:1296–306
  • Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev 2009;61:1159–76
  • Krinick N, Sun Y, Joyner D, et al. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J Biomater Sci Polym Ed 1994;5:303–24
  • Kopeček J. Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 2013;65:49–59
  • Vicent MJ, Greco F, Nicholson RI, et al. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem 2005;117:4129–34
  • Hongrapipat J, Kopečková P, Prakongpan S, Kopeček J. Enhanced antitumor activity of combinations of free and HPMA copolymer-bound drugs. Int J Pharm 2008;351:259–70
  • Markovsky E, Baabur-Cohen H, Eldar-Boock A, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012;161:446–60
  • Pinto AC, Moreira JN, Simões S. Combination chemotherapy in cancer: principles, evaluation and drug delivery strategies. In: Özdemir Ö, ed. Current cancer treatment-novel beyond conventional approaches. Rijeka, Croatia: InTech; 2011:693–714
  • Markovsky E, Baabur-Cohen H, Satchi-Fainaro R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J Control Release 2014;187:145–57
  • Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 2013;65:60–70
  • Lammers T, Subr V, Ulbrich K, et al. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 2009;30:3466–75
  • Emilienne Soma C, Dubernet C, Bentolila D, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 2000;21:1–7
  • Shiah J-G, Sun Y, Kopečková P, et al. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl) methacrylamide copolymer–doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates. J Control Release 2001;74:249–53
  • Satchi-Fainaro R, Puder M, Davies JW, et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 2004;10:255–61
  • Greco F, Vicent MJ, Penning NA, et al. HPMA copolymer-aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. J Drug Target 2005;13:459–70
  • Unger C, Harzmann R, Müller C, et al., eds. Phase I dose escalating study of PEG-PGA and DON: a new amino acid depleting anti cancer drug approach. Vol. 23. ASCO Annual Meeting Proceedings; 2005;23:31–75
  • Wang Y, Gao S, Ye W-H, et al. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 2006;5:791–6
  • Von Wagner M, Huber M, Berg T, et al. Peginterferon-α-2a (40KD) and ribavirin for 16 or 24 weeks in patients with genotype 2 or 3 chronic hepatitis C. Gastroenterology 2005;129:522–7
  • Miller K, Erez R, Segal E, et al. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer–alendronate–taxane conjugate. Angew Chem Int Ed 2009;48:2949–54
  • Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 2010;1:323–34
  • Fang J, Deng D, Nakamura H, et al. Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated d-amino acid oxidase. Int J Cancer 2008;122:1135–44
  • Pasut G, Greco F, Mero A, et al. polymer–drug conjugates for combination anticancer therapy: investigating the mechanism of action. J Med Chem 2009;52:6499–502
  • Song XR, Cai Z, Zheng Y, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009;37:300–5
  • Krakovičová H, Etrych T, Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci 2009;37:405–12
  • Ding H, Kopečková P, Kopecek J. Self-association properties of HPMA copolymers containing an amphipathic heptapeptide. J Drug Target 2007;15:465–74
  • Zhang Y, Pardridge WM. Delivery of β-galactosidase to mouse brain via the blood-brain barrier transferrin receptor. J Pharmacol Exp Ther 2005;313:1075–81
  • Johnson RN, Kopečková P, Kopeček JI. Biological activity of anti-CD20 multivalent HPMA copolymer-Fab’conjugates. Biomacromolecules 2012;13:727–35
  • Urbán P, Valle-Delgado JJ, Mauro N, et al. Use of poly (amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release 2014;177:84–95
  • Guo H, Zhang D, Li C, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 2013;458:31–8
  • Zhang L, Yao J, Zhou J, et al. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int J Pharm 2013;441:654–64
  • Liang Z, Gong T, Sun X, et al. Chitosan oligomers as drug carriers for renal delivery of zidovudine. Carbohydr Polym 2012;87:2284–90
  • Yamamoto Y, Tsutsumi Y, Yoshioka Y, et al. Poly (vinylpyrrolidone-co-dimethyl maleic acid) as a novel renal targeting carrier. J Control Release 2004;95:229–37
  • Yuan Z-X, Sun X, Gong T, et al. Randomly 50% N-acetylated low molecular weight chitosan as a novel renal targeting carrier. J Drug Target 2007;15:269–78
  • Xie Y, Aillon KL, Cai S, et al. Pulmonary delivery of cisplatin–hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm 2010;392:156–63
  • Bennett WD, Brown JS, Zeman KL, et al. Targeting delivery of aerosols to different lung regions. J Aerosol Med 2002;15:179–88
  • Ukawala M, Chaudhari K, Rajyaguru T, et al. Laminin receptor-targeted etoposide loaded polymeric micelles: a novel approach for the effective treatment of tumor metastasis. J Drug Target 2012;20:55–66
  • Amin M, Badiee A, Jaafari MR. Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm 2013;458:324–33
  • Canevari M, Castagliuolo I, Brun P, et al. Poly (ethylene glycol)-mesalazine conjugate for colon specific delivery. Int J Pharm 2009;368:171–7
  • Garjani A, Davaran S, Rashidi M, Malek N. Protective effects of some azo derivatives of 5-aminosalicylic acid and their pegylated prodrugs on acetic acid-induced rat colitis. DARU J Pharm Sci 2004;12:24–30
  • Cabot RC, Harris NL, Rosenberg ES, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187–97
  • Bhandari KH, Newa M, Chapman J, Doschak MR. Synthesis, characterization and evaluation of bone targeting salmon calcitonin analogs in normal and osteoporotic rats. J Control Release 2012;158:44–52
  • Chen H, Li G, Chi H, et al. Alendronate-conjugated amphiphilic hyperbranched polymer based on boltorn H40 and poly (ethylene glycol) for bone-targeted drug delivery. Bioconjug Chem 2012;23:1915–24
  • Wang J, Ferruzzi MG, Ho L, et al. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J Neurosci 2012;32:5144–50
  • Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010;10:319–31
  • Martins SM, Sarmento B, Nunes C, et al. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 2013;85:488–502
  • Sharma R, Greenhough S, Medine CN, Hay DC. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. BioMed Res Int 2010;2010:236147
  • Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982;51:531–54
  • Kmiec Z. Cooperation of liver cells in health and disease: with 18 tables. New York: Springer; 2001
  • Bianucci AM, Chiellini F. A 3D model for the human hepatic asialoglycoprotein receptor (ASGP-R). J Biomol Struc Dyn 2000;18:435–51
  • Chen Z, Xiao L, Liu W, et al. Novel materials which possess the ability to target liver cells. Expert Opin Drug Deliv 2012;9:649–56
  • Liang M, Zheng X, Tu L, et al. The liver-targeting study of the N-galactosylated chitosan in vivo and in vitro. Artif Cells Nanomed Biotechnol 2014;42:423–8
  • Gagandeep K. Asialofetuin-coated PLGA nanoparticles for targeting hepatocytes. DSpace Softw 2010;8:31 , 4947–52
  • Mishra N, Yadav NP, Rai VK, et al. Efficient hepatic delivery of drugs: novel strategies and their significance. BioMed Res Int 2013;2013:382184
  • He ZY, Zheng X, Wu XH, et al. Development of glycyrrhetinic acid-modified stealth cationic liposomes for gene delivery. Int J Pharm 2010;397:147–54
  • Higuchi Y, Nishikawa M, Kawakami S, et al. Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and Kupffer cells. Int J Pharm 2004;287:147–54
  • Huang J, Gao F, Tang X, et al. Liver-targeting doxorubicin-conjugated polymeric prodrug with pH-triggered drug release profile. Polym Int 2010;59:1390–6
  • Hashida M, Akamatsu K, Nishikawa M, et al. Design of polymeric prodrugs of prostaglandin E1 having galactose residue for hepatocyte targeting. J Control Release 1999;62:253–62
  • Seymour LW, Ferry DR, Anderson D, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 2002;20:1668–76
  • Huang W, Wang W, Wang P, et al. Glycyrrhetinic acid-modified poly (ethylene glycol)–b-poly (γ-benzyl l-glutamate) micelles for liver targeting therapy. Acta Biomater 2010;6:3927–35
  • Biessen EA, Beuting DM, Vietsch H, et al. Specific targeting of the antiviral drug 5-iodo 2′-deoxyuridine to the parenchymal liver cell using lactosylated poly-l-lysine. J Hepatol 1994;21:806–15
  • Wu D-Q, Lu B, Chang C, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 2009;30:1363–71
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013;2013:340315
  • Fiume L, Stefano GD, Busi C, et al. Liver targeting of antiviral nucleoside analogues through the asialoglycoprotein receptor. J Viral Hepat 1997;4:363–70
  • Ma Pa, Liu S, Huang Y, et al. Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials 2010;31:2646–54
  • Zhan T, Li P, Bi S, et al. 12P-conjugated PEG-modified gold nanorods combined with near-infrared laser for tumor targeting and photothermal therapy. J Nanosci Nanotechnol 2012;12:7198–205
  • Su Z, Niu J, Xiao Y, et al. Effect of octreotide–polyethylene glycol (100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm 2011;8:1641–51
  • Bhadra D, Yadav A, Bhadra S, Jain N. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 2005;295:221–33
  • Kim E-M, Jeong H-J, Park I-K, et al. Hepatocyte-targeted nuclear imaging using 99 mTc-galactosylated chitosan: conjugation, targeting, and biodistribution. J Nucl Med 2005;46:141–5
  • Hashida M, Nishikawa M, Takakura Y. Hepatic targeting of drugs and proteins by chemical modification. J Control Release 1995;36:99–107
  • Song S-C, Lee CO, Sohn YS. Synthesis and antitumor activity of poly (organophosphazene)/doxorubicin conjugates. Bull Korean Chem Soc 1999;20:250–2
  • Pimm MV, Perkins AC, Strohalm J, et al. Gamma scintigraphy of a 123I-labelled N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugate containing galactosamine following intravenous administration to nude mice bearing hepatic human colon carcinoma. J Drug Target 1996;3:385–90
  • Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice. J Control Release 2001;70:295–307
  • Ishihara T, Kaneko K, Ishihara T, Mizushima T. Development of biodegradable nanoparticles for liver-specific ribavirin delivery. J Pharm Sci 2014;103:4005–11
  • Craparo EF, Sardo C, Serio R, et al. Galactosylated polymeric carriers for liver targeting of sorafenib. Int J Pharm 2014;466:172–80
  • Eisenfeld AJ, Aten RF. Estrogen receptors and androgen receptors in the mammalian liver. J Steroid Biochem 1987;27:1109–18
  • Muller-Eberhard U, Liem HH, Grasso JA, et al. Increase in surface expression of transferrin receptors on cultured hepatocytes of adult rats in response to iron deficiency. J Biol Chem 1988;263:14753–6
  • Fafalios A, Ma J, Tan X, et al. A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat Med 2011;17:1577–84
  • Sinclair EM, Yusta B, Streutker C, et al. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 2008;135:2096–106
  • Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 2008;36:S146–51
  • Zhang Z, Zheng Q, Han J, et al. The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials 2009;30:1372–81
  • Yuan Z-X, Li J-J, Zhu D, et al. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J Drug Target 2011;19:540–51
  • Wang S, Luo J, Lantrip DA, et al. Design and synthesis of [111In] DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 1997;8:673–9
  • Su M, He Q, Zhang Z, et al. Kidney-targeting characteristics of N-acetyl-l-glutamic prednisolone prodrug. Acta Pharm Sin 2003;38:627–30
  • Choi CHJ, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA 2011;108:6656–61
  • Tuffin G, Waelti E, Huwyler J, et al. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol 2005;16:3295–305
  • He XK, Yuan ZX, Wu XJ, et al. Low molecular weight hydroxyethyl chitosan-prednisolone conjugate for renal targeting therapy: synthesis, characterization and in vivo studies. Theranostics 2012;2:1054–63
  • Borgman MP, Coleman T, Kolhatkar Rb, et al. Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A″-DTPA) conjugates show increased kidney accumulation. J Control Release 2008;132:193–9
  • Kodaira H, Tsutsumi Y, Yoshioka Y, et al. The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials 2004;25:4309–15
  • Sasano H, Fukushima K, Sasaki I, et al. Immunolocalization of mineralocorticoid receptor in human kidney, pancreas, salivary, mammary and sweat glands: a light and electron microscopic immunohistochemical study. J Endocrinol 1992;132:305–10
  • Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 2010;25:79–87
  • Wang Y, Sun Y, Wang H, et al. Synthesis of low-molecular weight protein (LMWP) lysozyme–curcumin conjugates for kidney drug targeting. J Biomater Sci Polym Ed 2013;24:1360–7
  • Knight SF, Kundu K, Joseph G, et al. Folate receptor–targeted antioxidant therapy ameliorates renal ischemia–reperfusion injury. J Am Soc Nephrol 2012;23:793–800
  • Hussain T, Lokhandwala MF. Renal dopamine receptor function in hypertension. Hypertension 1998;32:187–97
  • Vallon V, Osswald H. Adenosine receptors in health and disease: adenosine receptors and the kidney. In: Wilson CN, Mustafa SJ, eds. Handbook of experimental pharmacology. Berlin: Springer; 2009:443–70
  • Arima S, Ito S. Angiotensin II type 2 receptors in the kidney: evidence for endothelial-cell-mediated renal vasodilatation. Nephrol Dial Transpl 2000;15:448–51
  • Linehan WM. Targeting VEGF receptors in kidney cancer. Lancet Oncol 2007;8:956–7
  • Linehan WM, Bratslavsky G, Pinto PA, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med 2010;61:329–43
  • Guan Y. Targeting peroxisome proliferator-activated receptors (PPARs) in kidney and urologic disease. Minerva Urol Nefrol 2002;54:65–79
  • Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci 2009;1179:167–78
  • Tickoo SK, Gopalan A, Tu JJ, et al. Estrogen and progesterone-receptor-positive stroma as a non-tumorous proliferation in kidneys: a possible metaplastic response to obstruction. Mod Pathol 2007;21:60–5
  • Li J-Y, Zhou T, Gao X, et al. Testosterone and androgen receptor in human nephrolithiasis. J Urol 2010;184:2360–3
  • Obara W, Konda R, Akasaka S, et al. Prognostic significance of vitamin D receptor and retinoid X receptor expression in renal cell carcinoma. J Urol 2007;178:1497–503
  • El-Sheikh AA, Masereeuw R, Russel FG. Mechanisms of renal anionic drug transport. Eur J Pharmacol 2008;585:245–55
  • Kirk AD. Location, location, location: regional immune mechanisms critically influence rejection. Nat Med 2002;8:553–5
  • Ciarimboli G. Organic cation transporters. Xenobiotica 2008;38:936–71
  • Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 2004;44:137–66
  • Saito A, Sato H, Iino N, Takeda T. Molecular mechanisms of receptor-mediated endocytosis in the renal proximal tubular epithelium. BioMed Res Int 2010;2010:403272
  • Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002;3:258–68
  • Lebeau C, Debelle FD, Arlt VM, et al. Early proximal tubule injury in experimental aristolochic acid nephropathy: functional and histological studies. Nephrol Dial Transpl 2005;20:2321–32
  • Leheste J-R, Rolinski B, Vorum H, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999;155:1361–70
  • Chourasia M, Jain S. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci 2003;6:33–66
  • Sreelatha D, Brahma CK. Colon targeted drug delivery – a review on primary and novel approaches. J Glob Trends Pharm Sci 2013;4:1174–83
  • Periyasamy K, Pandey V. Novel approaches for Colon specific drug delivery system – a review. Int J Pharm Pharm Sci 2013;5:118–22
  • Hoffman JM, Tyler K, MacEachern SJ, et al. Activation of colonic mucosal 5-HT4 receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012;142:844–54
  • Wright K, Rooney N, Feeney M, et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 2005;129:437–53
  • Li A, Varney ML, Singh RK. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin Cancer Res 2001;7:3298–304
  • Hartman J, Gustafsson J-Å. Estrogen receptors in colorectal cancer: goalkeepers, strikers, or bystanders? Cancer Prev Res 2010;3:897–9
  • Yu L, Chen S. Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother 2008;57:1271–8
  • Sträter J, Hinz U, Walczak H, et al. Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 2002;8:3734–40
  • Gessi S, Merighi S, Varani K, et al. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A3 adenosine subtype. J Cell Physiol 2007;211:826–36
  • Jain A, Gupta Y, Jain SK. Azo chemistry and its potential for colonic delivery. Crit Rev Ther Drug Carrier Syst 2006;23:349–400
  • Varshosaz J, Emami J, Ahmadi F, et al. Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system: in vitro/in vivo evaluation in induced ulcerative colitis. J Drug Target 2011;19:140–53
  • Kong H, Kim H, Do H, et al. Structural effects of N-aromatic acyl-amino acid conjugates on their deconjugation in the cecal contents of rats: implication in design of a colon-specific prodrug with controlled conversion rate at the target site. Biopharm Drug Dispos 2011;32:343–54
  • Ojha M, Madhav NS, Singh A. Synthesis and evaluation of sodium carboxymethyl cellulose azo polymer for colon specificity. Int Curr Pharm J 2012;1:209–12
  • Kolte BP. Colon targeted drug delivery system – a novel perspective. Asian J Biomed Pharm Sci 2012;2:21–8
  • Sharma R, Rawal RK, Malhotra M, et al. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene–anticancer drug conjugates. Bioorg Med Chem 2014;22:1104–14
  • Gao S-Q, Lu Z-R, Petri B, et al. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1, 6-elimination spacer. J Control Release 2006;110:323–31
  • Varshosaz J, Emami J, Tavakoli N, et al. Synthesis and evaluation of dextran–budesonide conjugates as colon specific prodrugs for treatment of ulcerative colitis. Int J Pharm 2009;365:69–76
  • Kwon G, Suwa S, Yokoyama M, et al. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 1994;29:17–23
  • David A, Kopečková P, Minko T, et al. Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer–doxorubicin conjugates to human colon cancer cells. Eur J Cancer 2004;40:148–57
  • Sakuma S, Lu Z-R, Kopečková P, Kopeček J. Biorecognizable HPMA copolymer–drug conjugates for colon-specific delivery of 9-aminocamptothecin. J Control Release 2001;75:365–79
  • Ojha M, Satheesh N. Formulation and characterization of colon specific 5-flourouracil tablets using pectin-phenylalanine azo polymeric conjugate. Carib J Sci Tech 2014;2:549–59
  • Shrivastava P, Shrivastava A, Sinha S, Shrivastava S. Dextran carrier macromolecules for colon-specific delivery of 5-aminosalicylic acid. Indian J Pharm Sci 2013;75:277–83
  • Asghar LF, Chure CB, Chandran S. Colon specific delivery of indomethacin: effect of incorporating pH sensitive polymers in xanthan gum matrix bases. AAPS PharmSciTech 2009;10:418–29
  • Butler JP, Loring SH, Patz S, et al. Evidence for adult lung growth in humans. N Engl J Med 2012;367:244–7
  • Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 2005;60:193–205
  • Notter RH. Lung surfactants: basic science and clinical applications. Boca Raton: CRC Press; 2000
  • Crapo J, Barry B, Gehr P, et al. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 1982;126:332–7
  • Barnes PJ. Distribution of receptor targets in the lung. Proc Am Thorac Soc 2004;1:345–51
  • Courrier H, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst 2002;19:425–98
  • Klonne DR, Dodd DE, Losco PE, et al. Pulmonary fibrosis produced in F-344 rats by subchronic inhalation of aerosols of a 4000 molecular weight ethylene oxide/propylene oxide polymer. Toxicol Sci 1988;10:682–90
  • Saralidze K, van Hooy-Corstjens CS, Koole LH, Knetsch ML. New acrylic microspheres for arterial embolization: combining radiopacity for precise localization with immobilized thrombin to trigger local blood coagulation. Biomaterials 2007;28:2457–64
  • Pérez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid–protein interactions. Biochim Biophys Acta (BBA) Biomembr 2008;1778:1676–95
  • Patil J, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India 2012;29:44–9
  • Beck-Broichsitter M, Gauss J, Gessler T, et al. Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med Pulm Drug Deliv 2010;23:47–57
  • Nightingale JA, Rogers DF, Barnes PJ. Differential effect of formoterol on adenosine monophosphate and histamine reactivity in asthma. Am J Respir Crit Care Med 1999;159:1786–90
  • Bolton PB, Lefevre P, McDonald DM. Salmeterol reduces early-and late-phase plasma leakage and leukocyte adhesion in rat airways. Am J Respir Crit Care Med 1997;155:1428–35
  • Nichol G, Nix A, Barnes P, Chung KF. Prostaglandin F2 alpha enhancement of capsaicin induced cough in man: modulation by beta 2 adrenergic and anticholinergic drugs. Thorax 1990;45:694–8
  • Mak JC, Barnes PJ. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis 1990;141:1559–68
  • Haddad E-B, Mak J, Barnes PJ. Characterization of [3H] Ba 679 BR, a slowly dissociating muscarinic antagonist, in human lung: radioligand binding and autoradiographic mapping. Mol Pharmacol 1994;45:899–907
  • Mak JC, Haddad E-B, Buckley NJ, Barnes PJ. Visualization of muscarinic m4 mRNA and M4 receptor subtype in rabbit lung. Life Sci 1993;53:1501–8
  • Schäcke H, Döcke W-D, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 2002;96:23–43
  • Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002;2:106–15
  • Galvani E, Peters GJ, Giovannetti E. EGF receptor-targeted therapy in non-small-cell lung cancer: role of germline polymorphisms in outcome and toxicity. Future Oncol 2012;8:1015–29
  • Das M, Wakelee H. Targeting VEGF in lung cancer. Expert Opin Ther Targets 2012;16:395–406
  • Schultheis AM, Bos M, Schmitz K, et al. Fibroblast growth factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer. Mod Pathol 2013;27:214–21
  • Mohan R, Heyman RA. Orphan nuclear receptor modulators. Curr Top Med Chem 2003;3:1637–47
  • Figueroa DJ, Breyer RM, Defoe SK, et al. Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 2001;163:226–33
  • Lam KS, Salmon SE, Hersh EM, et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991;354:82–4
  • McGuire MJ, Li S, Brown KC. Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands. Biosensors and biodetection. Methods Mol Biol 2009;504:291–321
  • Lee T-Y, Lin C-T, Kuo S-Y, et al. Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 2007;67:10958–65
  • Chang D-K, Lin C-T, Wu C-H, Wu H-C. A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLoS One 2009;4:e4171
  • Wan Y, Zheng Y, Song X, et al. Anti-tumor activity of biodegradable polymer-paclitaxel conjugate micelles on lewis lung cancer mice models. J Biomater Sci Polym Ed 2011;22:1131–46
  • Liu J, Chu L, Wang Y, et al. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomedicine 2011;6:59–69
  • Geiger J, Aneja MK, Hasenpusch G, et al. Targeting of the prostacyclin specific IP1 receptor in lungs with molecular conjugates comprising prostaglandin I2 analogues. Biomaterials 2010;31:2903–11
  • Sarfati G, Dvir T, Elkabets M, et al. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials 2011;32:152–61
  • Zhang Y, Zhang H, Wu W, et al. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models. Int J Nanomedicine 2014;9:2019–30
  • Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 2015;9:1065–72
  • Wang D, Miller SC, Kopečková P, Kopeček J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005;57:1049–76
  • Marks S, Hermey D. The structure and development of bone. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. London: Academic Press; 1996:3–14
  • Pan H, Kopečková P, Wang D, et al. Water-soluble HPMA copolymer-prostaglandin E1 conjugates containing a cathepsin K sensitive spacer. J Drug Target 2006;14:425–35
  • Miller K, Clementi C, Polyak D, et al. Poly (ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials 2013;34:3795–806
  • Wang D, Sima M, Mosley RL, et al. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl) methacrylamide copolymers. Mol Pharm 2006;3:717–25
  • Pan H, Sima M, Kopečková P, et al. Biodistribution and pharmacokinetic studies of bone-targeting N-(2-hydroxypropyl) methacrylamide copolymer−alendronate conjugates. Mol Pharm 2008;5:548–58
  • Miller K, Eldar-Boock A, Polyak D, et al. Antiangiogenic antitumor activity of HPMA copolymer–paclitaxel–alendronate conjugate on breast cancer bone metastasis mouse model. Mol Pharm 2011;8:1052–62
  • Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998;19:80–100
  • Albert A, Rees C. Avidity of the tetracyclines for the cations of metals. Nature 1956;177:433–4
  • Perrin D. Binding of tetracyclines to bone. Nature 1965;208:787–88
  • Van Beek E, Cohen L, Leroy I, et al. Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone 2003;33:805–11
  • Hoang QQ, Sicheri F, Howard AJ, Yang DS. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003;425:977–80
  • Steitz SA, Speer MY, McKee MD, et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 2002;161:2035–46
  • Price PA, Lim JE. The inhibition of calcium phosphate precipitation by fetuin is accompanied by the formation of a fetuin-mineral complex. J Biol Chem 2003;278:22144–52
  • Tartaix PH, Doulaverakis M, George A, et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 2004;279:18115–20
  • Midura RJ, Wang A, Lovitch D, et al. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 2004;279:25464–73
  • Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997;386:78–81
  • Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 1996;21:134–40
  • Smith MR, Egerdie B, Toriz NH, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 2009;361:745–55
  • Pageau SC, ed. Denosumab. Landes Bioscience. MAbs 2009;1:210–15
  • Stenzl A. RANK ligand: a key role in cancer-induced bone destruction? Eur Urol Suppl 2009;8:823–8
  • Misra DN. Adsorption on and surface chemistry of hydroxyapatite. New York: Springer; 1984
  • Elvira C, San Román J. Synthesis and stereochemistry of isomeric methacrylic polymers derived from 4- and 5-aminosalicylic acids. Polymer 1997;38:4743–50
  • Itou K, Torii Y, Nishitani Y, et al. Effect of self-etching primers containing N-acryloyl aspartic acid on dentin adhesion. J Biomed Mater Res 2000;51:569–74
  • Thompson W, Thompson D, Anderson P, Rodan G. Polymalonic acids as bone affinity agents. European Patent, 1989. Patent no. 0341961:1–30
  • Pelvig D, Pakkenberg H, Stark A, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging 2008;29:1754–62
  • Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000
  • Hashizume K, Black KL. Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J Neuropathol Exp Neurol 2002;61:725–35
  • Chauhan NB. Trafficking of intracerebroventricularly injected antisense oligonucleotides in the mouse brain. Antisense Nucleic Acid Drug Dev 2002;12:353–7
  • Benoit J-P, Faisant N, Venier-Julienne M-C, Menei P. Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 2000;65:285–96
  • Davis S. Biomedical applications of nanotechnology – implications for drug targeting and gene therapy. Trends Biotechnol 1997;15:217–24
  • Zhang Y, Pardridge WM. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 2006;1111:227–9
  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000;11:1–18
  • Levey A, Kitt C, Simonds W, et al. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 1991;11:3218–26
  • Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharm Sci 2006;27:482–91
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000;17:266–74
  • Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008;29:313–39
  • Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001;108:779–84
  • Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63:182–217
  • Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr Top Med Chem 2004;4:1–17
  • Corbett AD, Henderson G, McKnight AT, Paterson SJ. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br J Pharmacol 2006;147:S153–62
  • Stein C, Schäfer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med 2003;9:1003–8
  • Goodman RR, Adler BA, Pasternak GW. Regional distribution of opioid receptors. In: Pasternak GW, ed. The opiate receptors. New York: Springer; 1988:197–228
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 2009;71:251–6
  • Van Rooy I, Mastrobattista E, Storm G, et al. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 2011;150:30–6
  • Lee HJ, Boado RJ, Braasch DA, et al. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med 2002;43:948–56
  • Salvati E, Re F, Sesana S, et al. Liposomes functionalized to overcome the blood–brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine 2013;8:1749–71
  • Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 2000;292:1048–52
  • Laskowitz D, Thekdi A, Thekdi S, et al. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol 2001;167:74–85
  • Hülsermann U, Hoffmann MM, Massing U, Fricker G. Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries. J Drug Target 2009;17:610–18
  • Demeule M, Regina A, Che C, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008;324:1064–72
  • Regina A, Demeule M, Che C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 2008;155:185–97
  • Shen J, Zhan C, Xie C, et al. Poly (ethylene glycol)-block-poly (D, L-lactide acid) micelles anchored with angiopep-2 for brain-targeting delivery. J Drug Target 2011;19:197–203
  • Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 2009;30:6976–85
  • Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 1984;12:4063–9
  • Gaillard PJ, Brink A, de Boer AG, eds. Diphtheria toxin receptor-targeted brain drug delivery. Int Congres Ser 2005;1277:185–98
  • Gaillard P, de Boer A. A novel opportunity for targeted drug delivery to the brain. J Control Release 2006;116:e60–2
  • Salama HA, Mahmoud AA, Kamel AO, et al. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf B Biointerfaces 2012;100:146–54
  • Sou K, Goins B, Oyajobi BO, et al. Bone marrow-targeted liposomal carriers. Expert Opin Drug Deliv 2011;8:317–28
  • Vunjak-Novakovic G, Tandon N, Godier A, et al. Challenges in cardiac tissue engineering. Tissue Eng B Rev 2009;16:169–87
  • Kim SJ, Kim J, Cho Y, et al. Combination chemotherapy with bortezomib, cyclophosphamide and dexamethasone may be effective for plasma cell leukemia. Jpn J Clin Oncol 2007;37:382–4
  • Hideshima T, Chauhan D, Podar K, et al, eds. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 2001;28:607–12
  • Van Eck M, De Winther MP, Herijgers N, et al. Effect of human scavenger receptor class A overexpression in bone marrow–derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2000;20:2600–6
  • Nemeth K, Wilson T, Rada B, et al. Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells 2012;30:222–31
  • Labouyrie E, Dubus P, Groppi A, et al. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 1999;154:405–15
  • Jacobsen K, Kravitz J, Kincade P, Osmond D. Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice. Blood 1996;87:73–82
  • Satomura K, Derubeis AR, Fedarko NS, et al. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol 1998;177:426–38
  • Lee S, Goldring S, Lorenzo JA. Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin. Endocrinology 1995;136:4572–81
  • Pontikoglou C, Liapakis G, Pyrovolaki K, et al. Evidence for downregulation of erythropoietin receptor in bone marrow erythroid cells of patients with chronic idiopathic neutropenia. Exp Hematol 2006;34:1312–22
  • Pino RM. Ultrastructural localization of lectin receptors on the bone-marrow sinusoidal endothelium of the rat. Am J Anatomy 1984;169:259–72
  • Phillips WT, Rudolph AS, Goins B, et al. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Radiat Appl Instrum B Nucl Med Biol 1992;19:539–47
  • Allen T, Austin G, Chonn A, et al. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta (BBA) Biomembr 1991;1061:56–64
  • Mann AP, Tanaka T, Somasunderam A, et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater 2011;23:H278–82
  • Porter CJ, Moghimi SM, Illum L, Davis SS. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett 1992;305:62–6
  • Moghimi S. Exploiting bone marrow microvascular structure for drug delivery and future therapies. Adv Drug Deliv Rev 1995;17:61–73
  • Harris TJ, Green JJ, Fung PW, et al. Tissue-specific gene delivery via nanoparticle coating. Biomaterials 2010;31:998–1006
  • Park YJ, Nah SH, Lee JY, et al. Surface-modified poly (lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope. J Biomed Mater ResA 2003;67:751–60
  • Farrell L-L, Pepin J, Kucharski C, et al. A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm 2007;65:388–97
  • Moghimi S, Porter C, Illum L, Davis S. The effect of poloxamer-407 on liposome stability and targeting to bone marrow: comparison with polystyrene microspheres. Int J Pharm 1991;68:121–6
  • Teasdale I, Wilfert S, Nischang I, Brüggemann O. Multifunctional and biodegradable polyphosphazenes for use as macromolecular anti-cancer drug carriers. Polym Chem 2011;2:828–34
  • Lee SM, Chun CJ, Heo JY, Song SC. Injectable and thermosensitive poly (organophosphazene) hydrogels for a 5-fluorouracil delivery. J Appl Polym Sci 2009;113:3831–9
  • Kang GD, Cheon SH, Song S-C. Controlled release of doxorubicin from thermosensitive poly (organophosphazene) hydrogels. Int J Pharm 2006;319:29–36
  • Kang GD, Heo JY, Jung SB, Song SC. Controlling the thermosensitive gelation properties of poly (organophosphazenes) by blending. Macromol Rapid Commun 2005;26:1615–18
  • Chun C, Lee SM, Kim CW, et al. Doxorubicin–polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 2009;30:4752–62
  • Cho JK, Park JW, Song SC. Injectable and biodegradable poly (organophosphazene) gel containing silibinin: its physicochemical properties and anticancer activity. J Pharm Sci 2012;101:2382–91
  • Potta T, Chun C, Song S-C. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Biomaterials 2009;30:6178–92
  • Kumar S, Singh RK, Sharma R, et al. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci 2015;66:123–37
  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012;63:185–98
  • Svenson S. Clinical translation of nanomedicines. Curr Opin Solid State Mater Sci 2012;16:287–94
  • Deeken JF, Slack R, Weiss GJ, et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 2013;71:627–33
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit RevTher Drug Carrier Syst 2009;26:523–80
  • Ma X, Zhao Y, Liang X-J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011;44:1114–22
  • Tan Q, Liu X, Fu X, et al. Current development in nanoformulations of docetaxel. Expert Opin Drug Deliv 2012;9:975–90
  • Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009;61:1203–13
  • Bae Y, Nishiyama N, Fukushima S, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005;16:122–30
  • Chan JM, Valencia PM, Zhang L, et al. Polymeric nanoparticles for drug delivery. Cancer nanotechnology. Methods mol Biol 2010;624:163–75
  • Hasanovic A, Zehl M, Reznicek G, Valenta C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 2009;61:1609–16
  • McDonald TO, Giardiello M, Martin P, et al. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro–in vivo correlation. Adv Healthc Mater 2014;3:400–11
  • Li C. Poly (L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 2002;54:695–713
  • Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Delivery Rev 2008;60:899–914
  • Singer JW. Paclitaxel poliglumex (XYOTAX™, CT-2103): a macromolecular taxane. J Control Release 2005;109:120–6
  • Singer JW, Baker B, de Vries P, et al. Poly-(l)-glutamic acid-paclitaxel (CT-2103)[XYOTAX™], a biodegradable polymeric drug conjugate. Polymer Drugs in the Clinical Stage. Adv Exp Med Biol 2003;519:81–99
  • Xu Q, Wang C-H, Pack DW. Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Design 2010;16:2350–68
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23:1517–26
  • Zhou Y, Kopecek J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 2013;21:1–26
  • Liu T-Y, Hussein WM, Jia Z, et al. Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013;14:2798–806
  • D'Souza GG, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 2009;6:1135–48
  • Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans 2007;35:56–60
  • Říhová B, Kovář L, Kovář M, Hovorka O. Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics. Trends Biotechnol 2009;27:11–17
  • Asamoah-Asare J, Zhang Y, Chen Y. Antibody conjugated polymeric prodrugs the future for cancer therapy. Int J Adv Biotechnol Bioeng 2013;1:1–17
  • Alvarez A, Costa-Fernández JM, Pereiro R, et al. Fluorescent conjugated polymers for chemical and biochemical sensing. TrAC Trends Anal Chem 2011;30:1513–25
  • Rochat Sb, Swager TM. Conjugated amplifying polymers for optical sensing applications. ACS Appl Mater Interfaces 2013;5:4488–502
  • McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev 2000;100:2537–74
  • Lammers T, Aime S, Hennink WE, et al. Theranostic nanomedicine. Acc Chem Res 2011;44:1029–38
  • Xu Y, Chang E, Liu H, et al. Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J Nucl Med 2012;53:312–17
  • Henchey EM. In vivo investigations of polymer conjugates as therapeutics. MSc Thesis, University of Massachusetts Amherst; 2011
  • Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012;21:418–29
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688–701
  • Pinheiro VB, Taylor AI, Cozens C, et al. Synthetic genetic polymers capable of heredity and evolution. Science 2012;336:341–4
  • Nishiyama N, Nori A, Malugin A, et al. Free and N-(2-hydroxypropyl) methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res 2003;63:7876–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.