650
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Aptamers: new arrows to target dendritic cells

, &
Pages 1-12 | Received 10 Dec 2014, Accepted 12 Apr 2015, Published online: 07 May 2015

References

  • Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2004;2:695–703
  • Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999;45:1628–50
  • Yan AC, Levy M. Aptamers and aptamer targeted delivery. RNA Biol 2009;6:316–20
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505–10
  • Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem 1999;68:611–47
  • Cullen BR. Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 1991;65:1053–6
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346:818–22
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505–10
  • Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors 2012;12:612–31
  • Hofmann HP, Limmer S, Hornung V, Sprinzl M. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA 1997;3:1289–300
  • Rajendran M, Ellington AD. Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 2008;390:1067–75
  • Geiger A, Burgstaller P, von der Eltz H, et al. RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996;24:1029–36
  • Mannironi C, Scerch C, Fruscoloni P, Tocchini-Valentini GP. Molecular recognition of amino acids by RNA aptamers: the evolution into an l-tyrosine binder of a dopamine-binding RNA motif. RNA 2000;6:520–7
  • Wallis MG, Streicher B, Wank H, et al. In vitro selection of a viomycin-binding RNA pseudoknot. Chem Biol 1997;4:357–66
  • Wallace ST, Schroeder R. In vitro selection and characterization of streptomycin-binding RNAs: recognition discrimination between antibiotics. RNA 1998;4:112–23
  • Wiegand TW, Williams PB, Dreskin SC, et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol 1996;157:221–30
  • Dang C, Jayasena SD. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol 1996;264:268–78
  • Hicke BJ, Marion C, Chang YF, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 2001;276:48644–54
  • Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem 2001;276:16464–8
  • Kumar PK, Machida K, Urvil PT, et al. Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology 1997;237:270–82
  • Hamula CL, Zhang H, Guan LL, et al. Selection of aptamers against live bacterial cells. Anal Chem 2008;80:7812–19
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24:1005–15
  • Chu TC, Marks JW, Lavery LA, et al. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006;66:5989–92
  • Correa C, Andrade A, Augusto-Pinto L, Goes A. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA. International Nuclear Atlantic Conference; October 24--28; Belo Horizonte, MG, Brazil: ABEN; 2011
  • Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 2007;7:3305–14
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419–26
  • Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J Immunol 2011;186:1325–31
  • Bonifaz LC, Bonnyay DP, Charalambous A, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004;199:815–24
  • Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002;196:1627–38
  • Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233–8
  • Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411–16
  • Wilson NS, Villadangos JA. Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications. Adv Immunol 2005;86:241–305
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151–61
  • Hui Y, Shan L, Lin-Fu Z, Jian-Hua Z. Selection of DNA aptamers against DC-SIGN protein. Mol Cell Biochem 2007;306:71–7
  • Berezovski MV, Lechmann M, Musheev MU, et al. Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 2008;130:9137–43
  • Nair S. Prostate cancer immunotherapy by targeting dendritic cells in vivo using receptor-specific aptamer conjugated to prostate stem cell antigen (PSCA)-encoding RNA. DTIC Document. Duke Univ Durham, NC: DTIC Document; August 2011:1--10
  • Wengerter BC, Katakowski JA, Rosenberg JM, et al. Aptamer-targeted antigen delivery. Mol Ther 2014;22:1375–87
  • Sefah K, Shangguan D, Xiong X, et al. Development of DNA aptamers using Cell-SELEX. Nat Protocols 2010;5:1169–85
  • Sefah K, Bae KM, Phillips JA, et al. Cell-based selection provides novel molecular probes for cancer stem cells. Int J Cancer 2013;132:2578–88
  • Graham JC, Zarbl H. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One 2012;7:e36103
  • Shangguan D, Meng L, Cao ZC, et al. Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 2008;80:721–8
  • Fukuda K, Vishnuvardhan D, Sekiya S, et al. Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur J Biochem 2000;267:3685–94
  • Umekage S, Kikuchi Y. Production of circular streptavidin RNA aptamer in vivo. Nucleic Acids Symp Ser 2007;51:391--2
  • Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 2006;103:11838–43
  • Berezovski MV, Lechmann M, Musheev MU, et al. Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 2008;130:9137–43
  • Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 2007;79:4900–7
  • Sefah K, Tang ZW, Shangguan DH, et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009;23:235–44
  • Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 2008;7:2133–9
  • Mallikaratchy P, Tang Z, Kwame S, et al. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol Cell Proteom 2007;6:2230–8
  • Mayer G, Ahmed MS, Dolf A, et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protocols 2010;5:1993–2004
  • Li N, Ebright JN, Stovall GM, et al. Technical and biological issues relevant to cell typing with aptamers. J Proteome Res 2009;8:2438–48
  • Van Voorhis WC, Hair LS, Steinman RM, Kaplan G. Human dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med 1982;155:1172–87
  • Crow MK, Kunkel HG. Human dendritic cells: major stimulators of the autologous and allogeneic mixed leucocyte reactions. Clin Exp Immunol 1982;49:338–46
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142–62
  • Steinman RM, Witmer MD, Nussenzweig MC, et al. Dendritic cells of the mouse: identification and characterization. J Investig Dermatol 1980;75:14–16
  • Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992;176:1693–702
  • Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994;180:83–93
  • Kiertscher SM, Roth MD. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J Leukocyte Biol 1996;59:208–18
  • Thurner B, Roder C, Dieckmann D, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999;223:1–15
  • Inaba K, Swiggard WJ, Steinman RM, et al. Isolation of dendritic cells. In: Current protocols in immunology. John Wiley & Sons, Inc; 2009:3.7.1--3.7.19
  • Berges C, Naujokat C, Tinapp S, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun 2005;333:896–907
  • van Helden SF, van Leeuwen FN, Figdor CG. Human and murine model cell lines for dendritic cell biology evaluated. Immunol Lett 2008;117:191–7
  • Jhaveri SD, Ellington AD. In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Current protocols in molecular biology. John Wiley & Sons, Inc; 2001:24.3.1--24.3.27
  • Lou X, Qian J, Xiao Y, et al. Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci 2009;106:2989–94
  • Hall B, Arshad S, Seo K, et al. In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Current protocols in nucleic acid chemistry. John Wiley & Sons, Inc; 2009:9.3.1--9.3.27
  • Shi H, Fan X, Ni Z, Lis JT. Evolutionary dynamics and population control during in vitro selection and amplification with multiple targets. RNA 2002;8:1461–70
  • Legiewicz M, Lozupone C, Knight R, Yarus M. Size, constant sequences, and optimal selection. RNA 2005;11:1701–9
  • Coleman TM, Huang F. RNA-catalyzed thioester synthesis. Chem Biol 2002;9:1227–36
  • De Grasse JA. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 2012;7:e33410
  • Bayrac AT, Sefah K, Parekh P, et al. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2011;2:175–81
  • Oh SS, Ahmad KM, Cho M, et al. Improving aptamer selection efficiency through volume dilution, magnetic concentration, and continuous washing in microfluidic channels. Anal Chem 2011;83:6883–9
  • Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem 1995;64:763–97
  • Wang T. Function and dynamics of aptamers: a case study on the malachite green aptamer. Graduate Theses and Dissertations. ProQuest/UMI: Iowa State University; 2008
  • Pollard J, Bell SD, Ellington AD. Design, synthesis, and amplification of DNA pools for construction of combinatorial pools and libraries. In: Current protocols in molecular biology. John Wiley & Sons, Inc; 2001:24.2.1--24.2.24.
  • Fitzwater T, Polisky B. A SELEX primer. Methods Enzymol 1996;267:275–301
  • Parekh P, Kamble S, Zhao N, et al. Biostable ssDNA aptamers specific for Hodgkin lymphoma. Sensors 2013;13:14543–57
  • Nakano S, Fujimoto M, Hara H, Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res 1999;27:2957–65
  • Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 2005;77:6107–12
  • Mendonsa SD, Bowser MT. In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 2005;127:9382–3
  • Murphy MB, Fuller ST, Richardson PM, Doyle SA. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 2003;31:e110
  • Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 2005;383:83–91
  • Raddatz MS, Dolf A, Endl E, et al. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem 2008;47:5190–3
  • Paul A, Avci-Adali M, Ziemer G, Wendel HP. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX. Oligonucleotides 2009;19:243–54
  • Higuchi RG, Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res 1989;17:5865
  • Gyllensten UB, Erlich HA. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 1988;85:7652–6
  • Svobodova M, Pinto A, Nadal P, O'Sullivan CK. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 2012;404:835–42
  • Avci-Adali M, Paul A, Wilhelm N, et al. Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 2010;15:1–11
  • Citartan M, Tang T-H, Tan S-C, et al. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production. Sonkla J Sci Technol 2012;34:125--31
  • Ahmad KM, Oh SS, Kim S, et al. Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One 2011;6:e27051
  • Eaton BE, Gold L, Zichi DA. Let's get specific: the relationship between specificity and affinity. Chem Biol 1995;2:633–8
  • Liu Y, Tan J, Thomas A, et al. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 2012;3:181–94
  • Xia T, Yuan J, Fang X. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study. J Phys Chem B 2013;117:14994–5003
  • Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 2000;287:820–5
  • Liberman JA, Wedekind JE. Riboswitch structure in the ligand-free state. Wiley Interdiscip Rev RNA 2012;3:369–84
  • Russo Krauss I, Merlino A, Giancola C, et al. Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res 2011;39:7858–67
  • Ellington AD. RNA selection. Aptamers achieve the desired recognition. Curr Biol 1994;4:427–9
  • Majerfeld I, Yarus M. An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol 1994;1:287–92
  • Konstantinov SR, Smidt H, de Vos WM, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 2008;105:19474–9
  • Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411–16
  • Regnault A, Lankar D, Lacabanne V, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 1999;189:371–80
  • Rodriguez A, Regnault A, Kleijmeer M, et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999;1:362–8
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182:389–400
  • Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000;12:71–81
  • Engering A, Geijtenbeek TB, van Vliet SJ, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 2002;168:2118–26
  • Witmer-Pack MD, Swiggard WJ, Mirza A, et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol 1995;163:157–62
  • Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007;315:107–11
  • Bonifaz LC, Bonnyay DP, Charalambous A, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004;199:815–24
  • Idoyaga J, Lubkin A, Fiorese C, et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci 2011;108:2384–9
  • Cheong C, Choi JH, Vitale L, et al. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010;116:3828–38
  • Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995;375:151–5
  • Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr opin Chem Biol 2013;17:118–26
  • Janas T, Janas T. The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 2011;16:25–39
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006;24:971–83
  • Meyer HE, Stuhler K. High-performance proteomics as a tool in biomarker discovery. Proteomics 2007;7:18–26
  • Kelly DJ, Ghosh S. RNA profiling for biomarker discovery: practical considerations for limiting sample sizes. Disease Markers 2005;21:43–8
  • Lescuyer P, Hochstrasser D, Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 2007;6:3371–6
  • Latham JA, Johnson R, Toole JJ. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res 1994;22:2817–22
  • Ellingham M, Bunka DH, Rowlands DJ, Stonehouse NJ. Selection and characterization of RNA aptamers to the RNA-dependent RNA polymerase from foot-and-mouth disease virus. RNA 2006;12:1970–9
  • Kulbachinskiy AV. Methods for selection of aptamers to protein targets. Biochem Biokhim 2007;72:1505–18
  • Henry AA, Romesberg FE. The evolution of DNA polymerases with novel activities. Curr Opin Biotechnol 2005;16:370–7
  • Ono T, Scalf M, Smith LM. 2′-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res 1997;25:4581–8
  • Tucker CE, Chen LS, Judkins MB, et al. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B 1999;732:203–12
  • Varizhuk AM, Tsvetkov VB, Tatarinova ON, et al. Synthesis, characterization and in vitro activity of thrombin-binding DNA aptamers with triazole internucleotide linkages. Eur J Med Chem 2013;67:90–7
  • Jellinek D, Green LS, Bell C, et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 1995;34:11363–72
  • Pagratis NC, Bell C, Chang YF, et al. Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 1997;15:68–73
  • Schmidt KS, Borkowski S, Kurreck J, et al. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 2004;32:5757–65
  • Klussmann S, Nolte A, Bald R, et al. Mirror-image RNA that binds d-adenosine. Nat Biotechnol 1996;14:1112–15
  • Wlotzka B, Leva S, Eschgfaller B, et al. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci USA 2002;99:8898–902
  • Hoehlig K, Maasch C, Shushakova N, et al. A novel C5a-neutralizing mirror-image (l-)aptamer prevents organ failure and improves survival in experimental sepsis. Mol Ther 2013;21:2236–46
  • Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 2010;5:e15004
  • Healy JM, Lewis SD, Kurz M, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 2004;21:2234–46
  • Diener JL, Daniel Lagasse HA, Duerschmied D, et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemos 2009;7:1155–62
  • Nutiu R, Li Y. Aptamers with fluorescence-signaling properties. Methods 2005;37:16–25
  • Yamana K, Ohtani Y, Nakano H, Saito I. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorga Med Chem Lett 2003;13:3429–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.