368
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting

&
Pages 294-308 | Received 23 Mar 2015, Accepted 24 May 2015, Published online: 06 Jul 2015

References

  • Chopdey PK, Tekade RK, Mehra NK, et al. Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J Nanosci Nanotechnol 2015;15:1088–100
  • Mehra NK, Jain NK. Functionalized carbon nanotubes and their drug delivery applications. In: Bhoop BS, ed. Section nanostructured drug delivery. Multi volume nanomedicine. Vol. 4. LLC USA: Studium Press; 2014:327–9
  • Mehra NK, Mishra V, Jain NK. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 2014;35:1267–83
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes cell translocation and delivery of nucleic acids in vitro and in vivo. J Mater Chem 2008;18:17–22
  • Jain K, Mehra NK, Jain NK. Potential and emerging trends in nanopharmacology. Curr Opin Pharmacol 2014;15C:97–106
  • Mehra NK, Jain AK, Lodhi N, et al. Challenges in the use of carbon nanotubes for biomedical application. Crit Rev Ther Drug Carr Syst 2008;25:169–206
  • Bacon R. Growth, structure, and properties of graphite whiskers. J Appl Phys 1960;31:284–90
  • Iijima S. Helical microtubules of graphite carbon. Nature 1991;354:56–8
  • Mao H, Kawazoe N, Chen G. Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes. Biomaterials 2013;34:2472–9
  • Mehra NK, Mishra V, Jain NK. Receptor based therapeutic targeting. Ther Deliv 2013;4:369–94
  • Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 2010;15:428–35
  • Niu L, Meng L, Lu Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci 2013;13:735–44
  • Brahmachari S, Ghosh M, Dutta S, Das PK. Biotinylated amphiphile-single-walled carbon nanotubes conjugate for target specific delivery to cancer cells. J Mater Chem B 2014;2:1160–73
  • Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 2012;33:3334–43
  • Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 2006;11:1182–4
  • Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012;33:3324–33
  • Gottardi R, Douradinha B. Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J Nanobiotechnol 2013;11:30. doi: 10.1186/1477-3155-11-30
  • Kotchey GP, Gaugler JA, Kapralov AA, et al. Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes. J Mater Chem B 2013;1:302–9
  • Allen BL, Kotchey GP, Chen Y, et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 2009;131:17194–205
  • Mehra NK, Jain K, Jain NK. Novel triazine dendrimer. In: Mishra M, ed. Encyclopedia of biomedical polymers and polymeric biomaterials. USA:Taylor and Francis; 2015:1–13
  • Bansal KK, Kakde D, Gupta U, Jain NK. Development and characterization of triazine based dendrimers for delivery of antitumor agent. J Nanosci Nanotechnol 2010;10:8395–404
  • Tekade RK, Kumar PV, Jain NK. Dendrimer in oncology: an expanding horizon. Chem Rev 2009;109:49–87
  • Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009;109:3141–57
  • Agrawal U, Mehra NK, Gupta U, Jain NK. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target 2013;21:497–506
  • Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Exp Opin Drug Deliv 2013;10:353–67
  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design consideration for nanomedical applications. Drug Discov Today 2010;15:171–85
  • Mishra V, Gupta U, Jain NK. Surface engineered dendrimers: a solution for toxicity issue. J Biomat Sci 2009;20:141–66
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polymer Sci 2014;39:268–301
  • Gupta R, Mehra NK, Jain NK. Development and characterization of sulfasalazine loaded fucosylated PPI dendrimer for the treatment of cytokine-induced liver damage. Euro J Pharm Biopharm 2014;86:449–58
  • Mody N, Tekade RK, Mehra NK, et al. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech 2015;15:1088–100
  • Qin W, Yang K, Tang H, et al. Improved GFP gene transfection mediated by polyamidoamine dendrimer-funcionalized multi-walled carbon nanotubes with high biocompatibility. Colloid Surf B: Biointerfaces 2011;84:206–13
  • Zhang X, Chen L, Yuan T, et al. Dendrimer-linked, renewable and magnetic carbon nanotubes aerogels. Mat Horizon 2014;1:232–6
  • Liu M, Chen B, Xue Y, et al. Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking. Bioconjug Chem 2011;22:2237–43
  • Sano M, Kamino A, Shinkai S. Construction of carbon nanotubes “stars” with dendrimers. Angew Chem Int Ed Engl 2001;40:4661–3
  • Campidelli S, Sooambar C, Diz EL, et al. Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc 2006;128:12544–52
  • Tao L, Chen G, Mantovani G, et al. Modification of multi-wall carbon nanotubes surfaces with poly(amidoamine) dendrons: synthesis and metal templating. Chem Commun 2006;47:4949–51
  • Pan BF, Cui DX, Xu P, et al. Cellular uptake enhancement of polyamidoamine dendrimer modified single walled carbon nanotubes. J Biomed Pharm Eng 2007;1:13–16
  • Garcia A, Herrero MA, Frein S, et al. Synthesis of dendrimer–carbon nanotubes conjugate. Phys Status Solidi 2008;205:1402–7
  • Yuan W, Jiang G, Che J, et al. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J Phys Chem C 2008;112:18754–9
  • Wu P, Malkoch M, Hunt JN, et al. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun 2005;46:5775–7
  • Turnbull WB, Stoddart JF. Design and synthesis of glycodendrimers. Rev Mol Biotechnol 2002;90:231–55
  • Cloninger MJ. Biological applications of dendrimers. Curr Opin Chem Biol 2002;6:742–8
  • You YZ, Yan JJ, Yu Z, et al. Multi-responsive carbon nanotubes gel prepared via ultrasound-induced assembly. J Mat Chem 2009;19:7656–60
  • Pan BF, Cui DX, Xu P, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multiwalled carbon nanotubes and their application in gene delivery systems. Nanotechnology 2009;20:125101
  • Shi X, Wang SH, Shen M, et al. Multifunctional dendrimer-modified multiwall carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 2009;10:1744–50
  • Chang DW, Jeon IY, Baek JB, Dai L. Efficient dispersion of single walled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. Chem Commun 2010;46:7924–6
  • Herrero MA, Guerra J, Mayers VS, et al. Gold dendrimer encapsulated nanoparticles as labeling agents for multiwalled carbon nanotubes. ACS Nano 2010;234:905–12
  • Chen D, Wu X, Wang J, et al. Morphological observation of interaction between PAMAM dendrimer modified SWCNT and pancreatic cancer cells. Nano Biomed Eng 2010;2:61–6
  • Mei L, He X, Li Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers. Mat Lett 2010;64:2505–8
  • Jayamurugan G, Vasu KS, Rajesh YB, et al. Interaction of single-walled carbon nanotubes with poly(propyl ether imine). J Chem Phys 2011;134:104507
  • Shen Y, Xu Q, Gao H, Zhu N. Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation. Electrochem Commun 2009;11:1329–32
  • McCarroll J, Baigude H, Yang CS, Rana TM. Nanotubes functionalized with lipids and natural amino acids dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 2010;21:56–63
  • Murugan E, Vimala G. Effective functionalization of multiwalled carbon nanotubes with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersibility and antimicrobial activity. J Colloid Interface Sci 2011;357:354–65
  • Zhang Y, Qin W, Tang H, et al. Efficient assembly of multi-walled carbon nanotubes-CdSe/ZnS quantum dot hybrids with high biocompatibility and fluorescence property. Colloids Surf B: Biointerfaces 2011;87:346–52
  • Nabid MR, Bide Y, Jamal S, Rezaei T. Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki-Heck cross-coupling reactions. App Cat A: General 2011;406:124–32
  • Huang P, Lin J, Yang D, et al. Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 2011;152:e33–4
  • Yang K, Qin Q, Tg HL, et al. Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells: effects of different types of carbon nanotubes. J Biomed Mat Res Part A 2011;99A:231–9
  • Mehdipoor E, Adeli M, Bavadi M, et al. A possible anticancer drug delivery system based on carbon nanotubes–dendrimer hybrid nanomaterials. J Mat Chem 2011;21:15456–63
  • Sun JT, Hong CY. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym Chem 2011;2:998–1007
  • Neelgund GM, Oki A, Luo Z. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloidal Surf B: Biointerfaces 2012;100:215–21
  • Wen S, Liu H, Cai H, et al. Drug delivery: targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multiwalled carbon nanotubes. Adv Healthcare Mater 2013;2:1181
  • Soleyman R, Adeli M. Impact of dendritic polymers on nanomaterials. Polym Chem 2015;6:10–24
  • Karchemski F, Zucker D, Barenholtz Y, Regev O. Carbon nanotubes–liposomes conjugate as a platform for drug delivery into cells. J Control Release 2012;160:339–45
  • Gaunt NP, Patil-Sen Y, Baker MJ, Kulkarni CV. Carbon nanotubes for stabilization of nanostructured lipid particles. Nanoscale 2015;7:1090–5
  • Miyako E, Kono K, Yuba E, et al. Carbon nanotubes-liposome supramolecular nanotrains for intelligent molecular–transport systems. Nat Commun 2012;3:1226
  • Zucker D, Marcus D, Barenholtz Y, Goldblum A. Liposome drug’s loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release 2009;139:73–80
  • Regev O, Barenholtz Y, Peretz S, et al. Can carbon nanotube–liposome conjugates address the issues associated with carbon nanotubes in drug delivery. Future Med Chem 2013;5:503–5
  • Shi L, Shi D, Nollert MU, et al. Single-walled carbon nanotubes do not pierce aqueous phospholipid bilayers at low salt concentration. J Phys Chem B 2013;117:6749–58
  • Gabizon A, Shmeeda H, Barenholtz Y. Pharmacokinetics of pegylated liposomal doxorubicin – review of animal and human studies. Clin Pharmacokinet 2003;42:419–36
  • Marc HP, Paunov VN. Assembling carbon nanotubosomes using an emulsion–inversion technique. Chem Commun 2005;2:1726–8
  • Georgakilas V, Gournis D, Tzitzios V, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mat Chem 2007;17:2679–94
  • Xiao J, Chen C, Xi J, et al. Core–shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nanoscale 2015;7:7056–64
  • Kardimi K, Tsoufis T, Tomou A, et al. Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance. Int J Hydrogen Energy 2012;37:1243–53
  • Sadek AZ, Bansal V, McCulloch DG, et al. Facile, size-controlled deposition of highly dispersed gold nanoparticles on nitrogen carbon nanotubes for hydrogen sensing. Sensor Actuator B: Chem 2011;160:1034–42
  • Wang J, Zhao G, Li Y, et al. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biotechnol 2013;97:681–92
  • Neelgund GM, Oki A. A simple and rapid method to graft hydroxyapatite on carbon nanotubes. J Nanosci Nanotechnol 2011;11:3621
  • Han L, Wu W, Kirk FL, et al. A direct route toward assembly of nanoparticle–carbon nanotubes composite materials. Langmuir 2004;20:6019–25
  • Liu S, Wehmschulte RJ. A novel hybrid of carbon nanotubes/iron nanoparticles: iron-filled nodule-containing carbon nanotubes. Carbon 2005;43:1550–5
  • Saha K, Agasti SS, Kim C, et al. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012;112:2739–79
  • Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740–79
  • Priyam A, Idris NM, Zhang Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J Mater Chem 2012;22:960–5
  • Vigderman L, Khanal BP, Zbarev ER. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mat 2012;24:4811–41
  • Chandrasekar PV, Jung H, Kim CG, Kim D. Gold nanorods synthesis on single-wall carbon nanotubes bundles via substrate confinement. Cryst Eng Commun 2012;14:2166–71
  • Jiang H, Zhu L, Moon K, Wong CP. The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 2007;45:655–61
  • Hull RV, Li L, Xing Y, Chusuei CC. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem Mater 2006;18:1780–8
  • Li X, Liu Y, Fu L, et al. Direct route to high-density ad uniform assembly of Au nanoparticles on carbon nanotubes. Carbon 2006;44:3139–42
  • Raghuveer MS, Agrawal S, Bishop N, Ramanath G. Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem Mater 2006;18:1390–3
  • Zhang R, Wang X. One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response. Chem Mater 2007;19:976–8
  • Oliveira MM, Zarbin AJG. Carbon nanotubes decorated with both gold nanoparticles and polythiophene. J Phys Chem C 2008;112:18783–6
  • Smorodin T, Beirlein U, Kotthaus JP. Contacting gold nanoparticles with carbon nanotubes by self-assembly. Nanotechnology 2005;16:1123–5
  • Mattia D, Korneva G, Sabur A, et al. Multifunctional carbon nanotubes with nanoparticles embedded in their walls. Nanotechnology 2007;18:155304
  • Xu P, Cui D, Pan B, et al. A facile strategy for covalent binding of nanoparticles onto carbon nanotubes. Appl Surf Sci 2008;254:5236–40
  • Lu J, Park BJ, Kumar B, et al. Polyaniline nanoparticle–carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology 2010;21:255501
  • Ismaili H, Labarthet FL, Workentin MS. Covalently assembled gold nanoparticles—carbon nanotubes hybrids via a photoinitiated carbine addition reaction. Chem Mater 2011;23:1519–25
  • Li R, Wu R, Zhao L, et al. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 2011;49:1797–805
  • Kumar S, Kaur I, Dharamvir K, Bhardwaj LM. Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes. J Colloid Interface Surf 2012;369:23–7
  • Lu YJ, Wei KC, Ma CCM, et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B: Biointerfaces 2012;89:1–9
  • Rojas JV, Castano CH. Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation. Radiat Phys Chem 2012;81:16–21
  • Fan X, Jiao G, Gao L, et al. The preparation and drug delivery of a graphene–carbon nanotubes–Fe3O4 nanoparticle hybrid. J Mat Chem B 2013;1:2658–64
  • Jiang W, Liu Y, Li FS, et al. Superparamagnetic cobalt-ferrite-modified carbon nanotubes using a facile method. Mat Sci Eng B 2010;166:132–4
  • Wu H, Liu G, Wang X, et al. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 2011;7:3496–504
  • Wu H, Liu G, Zhuang Y, et al. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials 2011;32:4867–76
  • Park Y, Ryu YM, Jung Y, et al. Spraying quantum dot conjugates in the colon of live animals enabled rapid and multiplex cancer diagnosis using endoscopy. ACS Nano 2014;8:8896–910
  • Bae PK, Chung BH. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies. Nano Converge 2014;1:23
  • Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicines. Nanomed: Nanotech Biol Med 2011;7:385–402
  • Das A, Hall E, Wai CM. Noncovalent attachment of PbS quantum dots to single-and multiwalled carbon nanotubes. J Nanotechnol 2014;2014: article ID 285857, 7 pages
  • Azoz S, Jiang J, Keskar G, et al. Mechanism for strong binding of CdSe quantum dots to multiwall carbon nanotubes for solar energy harvesting. Nanoscale 2013;5:6893–900
  • Liu K, Hong X, Wu M, et al. Quantum-coupled radial-breathing oscillation in double-walled carbon nanotubes. Nat Commun 2013;4:1375
  • Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticles drug delivery vehicle design. Adv Drug Deliv Rev 2013;65:703–18
  • Engels S, Weber P, Terres B, et al. Transportin coupled graphene–nanotube quantum devices. Nanotechnology 2013;24:035204
  • Lee JM, Kwon BH, Park HI, et al. Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv Mater 2013;25:2011–17
  • Chang WS, Jeong S, Shim HC, et al. Photocurrent imaging of nanocrystal quantum dots on single-walled carbon nanotubes device. J Nanosci Nanotechnol 2011;11:4300–4
  • Haremza JM, Hahn MA, Krauss TD. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2002;2:1253–8
  • Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots. Biomaterials 2007;28:4717–32
  • Tan A, Yildirimer L, Rajadas J, et al. Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicines. Nanomedicine (London) 2011;6:1101–14
  • Bruchez Jr M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–16
  • Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–18
  • Rosenthal SJ, Tomlinson I, Adkins EM, et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 2002;124:4586–96
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002;298:1759–62
  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2002;21:47–51
  • Nunes A, Al-Jamal KT, Kostarelos K. Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release 2012;161:290–306
  • Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett 2003;3:447–53
  • Banerjee S, Wong SS. Synthesis and characterization of carbon nanotubes–nanocrystal heterostructures. Nano Lett 2002;2:195–200
  • Guldi DM, Rahman GMA, Sgobba V, et al. CNT–CdTe versatile donor–acceptor nanohybrids. J Am Chem Soc 2006;128:2315–23
  • Pan B, Cui D, He R, et al. Covalent attachment of quantum dot on carbon nanotubes. Chem Phys Lett 2006;417:419–24
  • Olek M, Busgen T, Hilgendorff M, Giersig M. Quantum dot modified multiwall carbon nanotubes. J Phys Chem 2006;110:12901–4
  • Bottini M, Cerignoli F, Dawson MI, et al. Full length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 2006;7:2259–63
  • Hwang SH, Moorefield CN, Wang P, et al. Dendron-tethered and template CdS quantum dots on single-walled carbon nanotubes. J Am Chem Soc 2006;128:7505–9
  • Guo Y, Shi D, Cho HS, et al. In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv Funct Mat 2008;18:2489–97
  • Shi D, Cho HS, Huth C, et al. Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment. App Phys Lett 2009;95:223702
  • Russier J, Menard-Moyon C, Venturelli E, et al. Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale 2011;3:893–6
  • Kagan VE, Konduru NV, Feng W, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 2010;5:354–9
  • Allen BL, Kichambare PD, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 2008;8:3899–903
  • Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 2009;4:627–33
  • Delogu LG, Vidili G, Venturelli E, et al. Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci 2012;109:16612–17
  • Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2013;21:67–76
  • Jain S, Thakare VS, Das M, et al. Toxicity of multi walled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 2011;24:2028–40
  • Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 2015. [Epub ahead of print]. doi: 10.1016/j.drudis.2015.01.006
  • Mehra NK, Jain NK. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol Pharm 2015;12:630–43
  • Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68:6652−60
  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1:50–6
  • Mehra NK, Verma AK, Mishra PR, Jain NK. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 2014;35:4573–88
  • Mehra NK, Jain NK. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 2013;21:745–758
  • Singh R, Mehra NK, Jain V, Jain NK. Folic acid conjugated carbon nanotubes for gemcitabine HCL delivery. J Drug Target 2013;21:581–92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.