80
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Alterations in Early Filling Dynamics Predict the Progression of Compensated Pressure Overload Hypertrophy to Heart Failure Better than Abnormalities in Midwall Systolic Shortening

, , &
Pages 401-411 | Received 30 Aug 2012, Accepted 28 Sep 2012, Published online: 07 Nov 2012

References

  • Grossman W. Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 1980; 69(4):576–584.
  • Frohlich ED, Apstein C, Chobanian AV, . The heart in hypertension. N Engl J Med 1992; 327(14):998–1008.
  • Lorell BH, Grossman W. Cardiac hypertrophy: the consequences for diastole. J Am Coll Cardiol 1987; 9(5):1189–1193.
  • Osler W. The Principles and Practice of Medicine. New York, NY: D. Appleton and Co., 1892.
  • Fifer MA, Borow KM, Colan SD, Lorell BH. Early diastolic left ventricular function in children and adults with aortic stenosis. J Am Coll Cardiol 1985; 5(5):1147–1154.
  • Smith VE, Schulman P, Karimeddini MK, White WB, Meeran MK, Katz AM. Rapid ventricular filling in left ventricular hypertrophy: II. Pathologic hypertrophy. J Am Coll Cardiol 1985; 5(4):869–874.
  • Zile MR, Bennett TD, St John Sutton M, . Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 2008; 118(14):1433–1441.
  • de Simone G, Devereux RB, Roman MJ, . Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol 1994; 23(6):1444–1451.
  • Aurigemma GP, Silver KH, McLaughlin M, Mauser J, Gaasch WH. Impact of chamber geometry and gender on left ventricular systolic function in patients >60 years of age with aortic stenosis. Am J Cardiol 1994; 74(8):794–798.
  • Aurigemma GP, Silver KH, Priest MA, Gaasch WH. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 1995; 26(1):195–202.
  • Shimizu G, Hirota Y, Kawamura K. Empiric determination of the transition from concentric hypertrophy to congestive heart failure in essential hypertension. J Am Coll Cardiol 1995; 25(4):888–894.
  • de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 1996; 93(2):259–265.
  • Aoyagi T, Fujii AM, Flanagan MF, . Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep. Systolic dysfunction precedes diastolic dysfunction. Circulation 1993; 88(5 Pt 1):2415–2425.
  • Chung ES, Perlini S, Aurigemma GP, Fenton RA, Dobson JG Jr, Meyer TE. Effects of chronic adenosine uptake blockade on adrenergic responsiveness and left ventricular chamber function in pressure overload hypertrophy in the rat. J Hypertens 1998; 16(12 Pt 1):1813–1822.
  • Perlini S, Ferrero I, Palladini G, . Survival benefits of different antiadrenergic interventions in pressure overload left ventricular hypertrophy/failure. Hypertension 2006; 48(1):93–97.
  • Perlini S, Palladini G, Ferrero I, . Sympathectomy or doxazosin, but not propranolol, blunt myocardial interstitial fibrosis in pressure-overload hypertrophy. Hypertension 2005; 46(5):1213–1218.
  • Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 1995; 91(10):2642–2654.
  • Borow KM, Colan SD, Neumann A. Altered left ventricular mechanics in patients with valvular aortic stenosis and coarction of the aorta: effects on systolic performance and late outcome. Circulation 1985; 72(3):515–522.
  • Bing OH, Brooks WW, Robinson KG, . The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol 1995; 27(1):383–396.
  • Brooks WW, Bing OH, Robinson KG, Slawsky MT, Chaletsky DM, Conrad CH. Effect of angiotensin-converting enzyme inhibition on myocardial fibrosis and function in hypertrophied and failing myocardium from the spontaneously hypertensive rat. Circulation 1997; 96(11):4002–4010.
  • Gaasch WH, Zile MR, Hoshino PK, Apstein CS, Blaustein AS. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 1989; 79(4):872–883.
  • Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 1994; 267(6 Pt 2):H2471–H2482.
  • Morii I, Kihara Y, Inoko M, Sasayama S. Myocardial contractile efficiency and oxygen cost of contractility are preserved during transition from compensated hypertrophy to failure in rats with salt-sensitive hypertension. Hypertension 1998; 31(4):949–960.
  • Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998; 352(Suppl. 1):SI8–SI14.
  • Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J 2008; 72(Suppl.A):A13–A16.
  • Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 1988; 85(2): 339–343.
  • Brooks WW, Shen SS, Conrad CH, Goldstein RH, Bing OH. Transition from compensated hypertrophy to systolic heart failure in the spontaneously hypertensive rat: structure, function, and transcript analysis. Genomics 2010; 95(2):84–92.
  • Chen YW, Pat B, Gladden JD, . Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 2011; 300(6):H2251–H2260.
  • Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper GT. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 1998; 82(7):751–761.
  • Wei S, Guo A, Chen B, . T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 2010; 107(4):520–531.
  • Okayama H, Hamada M, Kawakami H, . Alterations in expression of sarcoplasmic reticulum gene in Dahl rats during the transition from compensatory myocardial hypertrophy to heart failure. J Hypertens 1997; 15(12 Pt 2):1767–1774.
  • Boluyt MO, O’Neill L, Meredith AL, . Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 1994; 75(1):23–32.
  • Graham HK, Trafford AW. Spatial disruption and enhanced degradation of collagen with the transition from compensated ventricular hypertrophy to symptomatic congestive heart failure. Am J Physiol Heart Circ Physiol 2007; 292(3):H1364–H1372.
  • Givvimani S, Tyagi N, Sen U, . MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem 2010; 116(2):63–72.
  • Shiojima I, Sato K, Izumiya Y, . Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005; 115(8):2108–2118.
  • Kapur NK. Transforming growth factor-beta: governing the transition from inflammation to fibrosis in heart failure with preserved left ventricular function. Circ Heart Fail 2011; 4(1):5–7.
  • Falcao-Pires I, Palladini G, Goncalves N, . Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 2011; 106(5):801–814.
  • Rysa J, Leskinen H, Ilves M, Ruskoaho H. Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 2005; 45(5):927–933.
  • Tozzi R, Palladini G, Fallarini S, . Matrix metalloprotease activity is enhanced in the compensated but not in the decompensated phase of pressure overload hypertrophy. Am J Hypertens 2007; 20(6):663–669.
  • Mujumdar VS, Tyagi SC. Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J Hypertens 1999; 17(2):261–270.
  • Bing OH. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 1994; 26(8):943–948.
  • Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997; 272(5 Pt 2):H2313–H2319.
  • Li XM, Ma YT, Yang YN, . Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol 2009; 36(11):1054–1061.
  • Moorjani N, Ahmad M, Catarino P, . Activation of apoptotic caspase cascade during the transition to pressure overload-induced heart failure. J Am Coll Cardiol 2006; 48(7):1451–1458.
  • Sharma AK, Dhingra S, Khaper N, Singal PK. Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs. Am J Physiol Heart Circ Physiol 2007; 293(3):H1384–H1390.
  • Ikeda S, Hamada M, Hiwada K. Contribution of non-cardiomyocyte apoptosis to cardiac remodelling that occurs in the transition from compensated hypertrophy to heart failure in spontaneously hypertensive rats. Clin Sci (Lond) 1999; 97(2):239–246.
  • Fidzianska A, Bilinska ZT, Walczak E, Witkowski A, Chojnowska L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. J Electron Microsc (Tokyo) 2010; 59(2):181–183.
  • Beauloye C, Bertrand L, Horman S, Hue L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90(2):224–233.
  • Riehle C, Wende AR, Zaha VG, . PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 2011; 109(7):783–793.
  • Bartha E, Solti I, Kereskai L, . PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovasc Res 2009; 83(3):501–510.
  • Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996; 28(2):506–514.
  • Rohrbach S, Martin A, Niemann B, Cherubini A. Enhanced myocardial vitamin C accumulation in left ventricular hypertrophy in rats is not attenuated with transition to heart failure. Eur J Heart Fail 2008; 10(3):226–232.
  • Qiu H, Lizano P, Laure L, . H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation 2011; 124(4):406–415.
  • Perlini S, Arosio B, Parmeggiani L, . Adenosine A1 receptor expression during the transition from compensated pressure overload hypertrophy to heart failure. J Hypertens 2007; 25(2):449–454.
  • Arosio B, Perlini S, Calabresi C, . Adenosine A1 and A2A receptor cross-talk during ageing in the rat myocardium. Exp Gerontol 2003; 38(8):855–861.
  • Perlini S, Khoury EP, Norton GR, . Adenosine mediates sustained adrenergic desensitization in the rat heart via activation of protein kinase C. Circ Res 1998; 83(7):761–771.
  • Norton GR, Woodiwiss AJ, Gaasch WH, . Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol 2002; 39(4):664–671; [Epub ahead of print]. doi: 10.1093/cvr/cvs261.
  • Meyer TE, Chung ES, Perlini S, . Antiadrenergic effects of adenosine in pressure overload hypertrophy. Hypertension 2001; 37(3):862–868.
  • Cittadini A, Monti MG, Iaccarino G, . Socs1 gene transfer accelerates the transition to heart failure through the inhibition of the Gp130/Jak/Stat pathway. Cardiovasc Res 2012 Sep 28; [Epub ahead of print]. doi: 10.1093/cvr/cvs261.
  • Wright JW, Mizutani S, Harding JW. Pathways involved in the transition from hypertension to hypertrophy to heart failure. Treatment strategies. Heart Fail Rev 2008; 13(3):367–375.
  • Iwanaga Y, Kihara Y, Inagaki K, . Differential effects of angiotensin II versus endothelin-1 inhibitions in hypertrophic left ventricular myocardium during transition to heart failure. Circulation 2001; 104(5):606–612.
  • Shapiro BP, Owan TE, Mohammed S, . Mineralocorticoid signaling in transition to heart failure with normal ejection fraction. Hypertension 2008; 51(2):289–295.
  • Mohammed SF, Ohtani T, Korinek J, . Mineralocorticoid accelerates transition to heart failure with preserved ejection fraction via “nongenomic effects”. Circulation 2010; 122(4):370–378.
  • Sakata Y, Yamamoto K, Mano T, . Temocapril prevents transition to diastolic heart failure in rats even if initiated after appearance of LV hypertrophy and diastolic dysfunction. Cardiovasc Res 2003; 57(3):757–765.
  • Weinberg EO, Schoen FJ, George D, . Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994; 90(3):1410–1422.
  • Flesch M, Erdmann E, Bohm M. Changes in beta-adrenoceptors and G-proteins during the transition from cardiac hypertrophy to heart failure. J Card Fail 1996; 2(4 Suppl.):S35–S43.
  • Yamamoto K, Masuyama T, Sakata Y, . Local neurohumoral regulation in the transition to isolated diastolic heart failure in hypertensive heart disease: absence of AT1 receptor downregulation and ‘overdrive’ of the endothelin system. Cardiovasc Res 2000; 46(3):421–432.
  • Emoto N, Raharjo SB, Isaka D, . Dual ECE/NEP inhibition on cardiac and neurohumoral function during the transition from hypertrophy to heart failure in rats. Hypertension 2005; 45(6):1145–1152.
  • Nishikimi T, Yoshihara F, Horinaka S, . Chronic administration of adrenomedullin attenuates transition from left ventricular hypertrophy to heart failure in rats. Hypertension 2003; 42(5):1034–1041.
  • Barrick CJ, Lenhart PM, Dackor RT, Nagle E, Caron KM. Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. J Mol Cell Cardiol 2012; 52(1):165–174.
  • Lutas EM, Devereux RB, Reis G, . Increased cardiac performance in mild essential hypertension. Left ventricular mechanics. Hypertension 1985; 7(6 Pt 1):979–988.
  • Hartford M, Wikstrand JC, Wallentin I, Ljungman SM, Berglund GL. Left ventricular wall stress and systolic function in untreated primary hypertension. Hypertension 1985; 7(1):97–104.
  • Blake J, Devereux RB, Herrold EM, . Relation of concentric left ventricular hypertrophy and extracardiac target organ damage to supranormal left ventricular performance in established essential hypertension. Am J Cardiol 1988; 62(4):246–252.
  • Shimizu G, Zile MR, Blaustein AS, Gaasch WH. Left ventricular chamber filling and midwall fiber lengthening in patients with left ventricular hypertrophy: overestimation of fiber velocities by conventional midwall measurements. Circulation 1985; 71(2):266–272.
  • Perlini S, Muiesan ML, Cuspidi C, . Midwall mechanics are improved after regression of hypertensive left ventricular hypertrophy and normalization of chamber geometry. Circulation 2001; 103(5):678–683.
  • Schussheim AE, Devereux RB, de Simone G, Borer JS, Herrold EM, Laragh JH. Usefulness of subnormal midwall fractional shortening in predicting left ventricular exercise dysfunction in asymptomatic patients with systemic hypertension. Am J Cardiol 1997; 79(8):1070–1074.
  • Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol 1998; 32(4):1118–1125.
  • Cerisano G, Bolognese L, Carrabba N, . Doppler-derived mitral deceleration time: an early strong predictor of left ventricular remodeling after reperfused anterior acute myocardial infarction. Circulation 1999; 99(2):230–236.
  • Xie GY, Berk MR, Smith MD, DeMaria AN. Relation of Doppler transmitral flow patterns to functional status in congestive heart failure. Am Heart J 1996; 131(4):766–771.
  • Nijland F, Kamp O, Karreman AJ, van Eenige MJ, Visser CA. Prognostic implications of restrictive left ventricular filling in acute myocardial infarction: a serial Doppler echocardiographic study. J Am Coll Cardiol 1997; 30(7):1618–1624.
  • Falcão-Pires I, Palladini G, Gonçalves N, . Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 2011; 106(5):801–814.
  • Chen Y, Guo H, Xu D, . Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension 2012; 59(6):1170–1178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.