134
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Effect of telmisartan on VEGF-induced and VEGF-independent angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ)-induced diabetic rats

&
Pages 557-566 | Received 30 Sep 2013, Accepted 19 Nov 2013, Published online: 03 Feb 2014

References

  • Huckle W, Earp H. Regulation of cell proliferation and growth by angiotensin II. Prog Growth Factor Res 1994;5:177–94
  • Itoh H, Mukoyama M, Pratt R, et al. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Investig 1993;91:2268–74
  • Daemen M, Lombardi D, Bosman F, Schwartz S. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 1991;68:450–6
  • Bell L, Madri J. Influence of the angiotensin system on endothelial and smooth muscle cell migration. Am J Pathol 1990;137:7–12
  • Griendling K, Minieri C, Ollerenshaw J, Alexander R. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–8
  • Liu Y, Yang X, Sharov V, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin 2 type 1-receptor antagonists in rats with heart failure: role of kinins and angiotensin II type receptors. J Clin Investig 1997;99:1926–35
  • Garg R, Yusuf S. Overview of randomised trials of angiotensin converting enzyme inhibitors on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. J Am Med Assoc 1995;273:1450–6
  • Sladek T, Sladkova J, Kolar F, et al. The effect of the AT1 receptor antagonist on chronic cardiac response to coronary artery ligation in rats. Cardiovasc Res 1996;31:568–76
  • Shahin Y, Khan J, Samuel N, Chetter I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis 2011;216:7–16
  • DeBoer R, Pinto Y, Suurmeijer A, et al. Increased expression of cardiac angiotensin II type 1 (AT (1)) receptors decreases myocardial microvessel density after experimental myocardial infarction. Cardiovasc Res 2003;57:434–42
  • Toblli J, Cao G, DeRosa G, et al. Angiotensin-converting enzyme inhibition and angiogenesis in myocardium of obese Zucker rats. Am J Hypertens 2004;17:172–80
  • Unger T, Mattfeldt T, Lamberty V, et al. Effect of early onset angiotensin converting enzyme inhibition on myocardial capillaries. Hypertension 1992;20:478–82
  • Sasaki K, Murohara T, Ikeda H, et al. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Investig 2002;109:603–11
  • Renault M, Losordo D. Therapeutic myocardial angiogenesis. Microvasc Res 2007;74:159–71
  • Ferrara N, Davis-Smith T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25
  • Distler J, Hirth A, Kurowska-Stolarska M, et al. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 2003;47:149–61
  • Scott R, Rosano J, Ivanov Z, et al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 2009;23:3361–7
  • Siddiqui A, Månsson-Broberg A, Gustafsson T, et al. Antagonism of the renin-angiotensin system can counteract cardiac angiogenic vascular endothelial growth factor gene therapy and myocardial angiogenesis in the normal heart. Am J Hypertens 2005;18:1347–52
  • Yamagishi S, Takeuchi M. Telmisartan is a promising cardiometabolic sartan due to its unique PPAR-c-inducing property. Med Hypotheses 2005;64:476–8
  • Huang T, Teoh A, Lin B, et al. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res 2009;60:195–206
  • Yuen C, Wong W, Tian X, et al. Telmisartan inhibits vasoconstriction via PPAR dependent expression and activation of endothelial nitric oxide synthase. Cardiovasc Res 2011;90:122–9
  • Biscetti F, Gaetani E, Flex A, et al. Selective activation of peroxisome proliferator-activated receptor (PPAR)α and PPARγ induces neoangiogenesis through a vascular endothelial growth factor-dependent mechanism. Diabetes 2008;57:1394–404
  • Cianchetti S, Fiorentino A, Colognato R, et al. Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilical vein endothelial cells. Atherosclerosis 2008;198:22–8
  • Shi-Ting W, Mang-Hua X, Wen-Ting C, et al. Study on tolerance to ischemia-reperfusion injury and protection of ischemic preconditioning of type1diabetes rat heart. Biomed Pharmacother 2010;1:56–60
  • Wei M, Ong L, Smith M, et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ 2003;12:44–50
  • Bell R, Mocanu M, Yellon D. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011;50:940–50
  • Nees S, Gerbes A, Gerlach E. Isolation, identification, and continuous culture of coronary endothelial cells from guinea pig hearts. Eur J Cell Biol 1981;24:287–97
  • Teng B, Ansari HR, Oldenburg PJ, et al. Isolation and characterization of coronary endothelial and smooth muscle cell from A1 adenosine receptor-knockout mice. Am J Physiol Heart Circ Physiol 2005;290:H1713–21
  • Ribatti D, Nico B, Vacca A, Presta M. The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 2006;1:85–92
  • Tatsch E, Bochi G, Pereira R, et al. A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 2011;44:348–50
  • Deryugina E, Quigley J. Chapter two: chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol 2008;444:21–41
  • Ribatti D. The chick embryo chorioallantoic membrane in the study of tumor angiogenesis. Rom J Morphol Embryol 2008;49:131–5
  • Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–42
  • Gerber H, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273:13313–16
  • Gerber H, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3*-kinase/Akt signal transduction pathway. J Biol Chem 1998;273:30336–43
  • Lee S, Chen T, Barber C, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007;130:691–703
  • Damert A, Miquerol L, Gertsenstein M, et al. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 2002;129:1881–92
  • Maharaj A, Saint-Geniez M, Maldonado A, D’Amore P. Vascular endothelial growth factor localization in the adult. Am J Pathol 2006;168:639–48
  • Miquerol L, Gertsenstein M, Harpal K, et al. Multiple developmental roles of VEGF suggested by a Lac Z tagged allele. Dev Biol 1999;212:307–22
  • Namiki A, Brogi E, Kearney M, et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 1995;270:31189–95
  • Wu L, Mayo L, Dunbar J, et al. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 2000;275:6059–62
  • Warner A, Lopez-Dee J, Knight E, et al. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial growth-factor receptor KDR in transfected cells. Biochem J 2000;347:501–9
  • Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-g and DNA synthesis in vascular endothelial cells. EMBO J 2001;20:2768–78
  • Cross M, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci 2003;28:488–94
  • Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997;15:2169–77
  • Fulton D, Gratton J, McCabe T, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399:597–601
  • Arsham A, Plas D, Thompson C, Simon M. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilisation of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 2002;277:15162–70
  • Gliki G, Wheeler-Jones C, Zachary I. Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3′-kinase mediated PKC phosphorylation: role of PKC in angiogenesis. Cell Biol Int 2002;26:751–9
  • Aronis K, Chamberlanda J, Mantzoros C. GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metab Clin Exp 2013;62:1279–86
  • Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 2001;49:554–60
  • Yarom R, Zirkin H, Stammler G, Rose A. Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material. J Pathol 1992;166:265–70
  • Heather L, Clarke K. Metabolism, hypoxia and the diabetic heart. J Mol Cell Cardiol 2011;50:598–605
  • Zhu M, Bi X, Jia Q, Shangguan S. The possible mechanism for impaired angiogenesis after transient focal ischemia in type 2 diabetic GK rats: different expressions of angiostatin and vascular endothelial growth factor. Biomed Pharmacother 2010;64:208–13
  • Wang X, Chen S, Jin H, Hu R. Differential analyses of angiogenesis and expression of growth factors in micro- and macrovascular endothelial cells of type 2 diabetic rats. Life Sci 2009;84:240–9
  • Zhao T, Zhao W, Chen Y, et al. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res 2010;80:188–94
  • Kanno S, Lee P, Zhang Y, et al. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 2000;101:2742–8
  • Barutcuoglu B, Parildar Z, Mutaf M, et al. Effect of telmisartan on vascular endothelium in hypertensive and type 2 diabetic hypertensive patients. Turk J Med Sci 2010;40:239–48
  • Jung A, Kim W, Park S, et al. The effect of telmisartan on endothelial function and arterial stiffness in patients with essential hypertension. Kor Circ J 2009;39:180–4
  • Terashima M, Kaneda H, Nasu M, et al. Protective effect of telmisartan against endothelial dysfunction after coronary drug-eluting stent implantation in hypertensive patients. J Am Coll Cardiol Cardiovasc Interv 2012;5:182–90
  • Siragusa M, Sessa W. Telmisartan exerts pleiotropic effects in endothelial cells and promotes endothelial cell quiescence and survival. Arteriosclers Thromb Vasc Biol 2013;33:1852–60
  • Watanabe T, Suzuki J, Yamawaki H, et al. Losartan metabolite EXP3179 activates Akt and endothelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells angiotensin II type 1 receptor-independent effects of EXP3179. Circulation 2005;112:1798–805
  • Schupp M, Lee L, Frost N, et al. Regulation of peroxisome proliferator-activated receptorγ activity by losartan metabolites. Hypertension 2006;47:586–9
  • Ríos N, Esparragón F, Rodríguez Pérez J. Telmisartan-induced eNOS gene expression is partially independent of its PPAR-gamma agonist property. Clin Investig Med 2012;35:E55–64
  • Knorr M, Hausding M, Schuhmacher S, et al. Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol 2011;31:2223–31
  • Yao L, Wang J, Zhao H, et al. Effect of telmisartan on expression of protein kinase C-alpha in kidneys of diabetic mice. Acta Pharmacol Sin 2007;28:829–38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.