6
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Age Related Changes of Catecholamines and Their Metabolites in Central Nervous System Regions of Spontaneously Hypertensive (SHR) and Normotensive Wistar-Kyoto (Wky) Rats:

, , &
Pages 2263-2277 | Published online: 03 Jul 2009

References

  • Chalmers J P. Brain amines and models of hypertension. Circ. Res 1975; 36: 469–480
  • Chalmers J P, Blessing W W, West M J, Howe P RC, Costa M, Furness J B. Importance of new catecholamine pathways in the control of blood pressure. Clin. Exp. Hypertension 1981; 3(3)393–415
  • Engel J, Carlsson A. Catecholamines and behaviour. Current Developments in Psychopharmacology, L. Valzelli, W.B. Essman. Spectrum Publ. inc., New York 1976; Vol. 4: pp 2–32
  • Elyhozi J, Mazeaud M, Le Quan-bui K H, Aragon I, Meyer P, Devynck M. Regional distribution of norepinephrine and dopamine-β-hydroxylase in the brain of spontaneously hypertensive rats. Clin. Exp. Hypertension 1982; A4(3)641–475
  • Erinhoff L, Heller A, Oparil S. Prevention of hypertension in the SH rat: Effects of differential central catecholamine depletion. Proc. Soc. Exp. Biol. Med 1975; 150: 748–754
  • Finch L, Haeusler G, Thoenen H. Failure to induce experimental hypertension in rats after intraventricular injection of 6-hydroxydopamine. Brit. J. Pharmac. (Proc) 1972; 44(2): 356p–357p
  • Fuxe K, Ganten D, Jonsson G, Agnati L F, Andersson K, Hokfelt T, Bolme P, Goldstein M, Hallman H, Unger T, Rascher W. Catecholamine turnover changes in hypothalamus and dorsal midline area of the caudal medulla oblongata of spontaneously hypertensive rats. Neurosci. Lett 1979; 15: 283–288
  • Fuxe K, Ganten D, Jonsson G, Bolme P, Agnati L, Andersson K, Goldstein M, Hokfelt T. Evidence for a selective reduction in adrenaline turnover in the dorsal midline area of the caudal medulla oblongata of young spontaneously hypertensive rats. Acta Physiol. Scand 1979; 107: 397–399
  • Glowinski J, Iversen L. Regional studies of catecholamines in the rat brain. I. The regional distribution of [3H] norepinephrine, [3H] dopamine, and [3H] dopa in various regions of the brain. J. Neurochem. 1966; 13: 655–669
  • Gianutsos G, Moore K E. Epinephrine contents of sympathetic ganglia and brain regions of spontaneously hypertensive rats of different ages. Proc. Soc. Exp. Biol. Med 1978; 158: 45–49
  • Hellstrand K, Engel. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats. J. Neural. Transmiss 1980; 48: 57–63
  • Howe P RC, West M J, Provis J C, Chalmers J P. Content and turnover of norepinephrine in spinal cord and cerebellum of spontaneously hypertensive and stroke-prone rats. Europ. J. Pharmac 1981; 73: 123–129
  • Howes L G, Rowe P R, Summers R J, Louis W J. Age related changes in noradrenaline content in brain regions of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin. Exp. Hyper 1983; A5: 857–874
  • Howes L G, Summers R J, Rowe P R, Louis W J. The simultaneous determination of 3, 4-dihydroxyphenylethylene-glycol, 3, 4-dihydroxyphenylacetic acid and catecholamines in brain tissue by high performance liquid chromatography with electrochemical detection. Neurosci. Lett. 1983; 38: 327–332
  • Le Fur G, Guilloax F, Kobouche M, Mitrani N, Ferris O, Uzan A. Central dopaminergic neurons during development of genetic and DOCA-salt hypertension in the rat. Devel. Brain Res 1981; 1: 153–163
  • Louis W J, Tabei R, Sjoerdsma A, Spector S. Inheritance of high blood pressure in the spontaneously hypertensive rat. Lancet 1969; i: 1035–1036
  • Louis W J, Tabei R, Specter S, Sjoerdsma A. Studies on the spontaneously hypertensive rat: Geneology effects of varying salt intake and kinetics of catecholamine metabolism. Cir. Res 1969; 25(1)93
  • Lovenberg W, Yamabe H, de Jong W, Hansen C T. Genetic variation of the catecholamine biosynthetic enzyme activities in various strains of rats including the spontaneously hypertensive rat. Frontiers in Catecholamine Research, E. Usdin, S. Snyder. Pergamon Press, New York 1973; p. 891
  • Morris M, Wren J A, Sandberg D K. Central neural peptides and catecholamines in spontaneous and DOCA-salt hypertension. Peptides 1981; 2: 207–211
  • Nagatsu T, Kato T, Numata (Sudo) Y., Ikuto K, Sano I, Nagatsu M, Umezaura H, Matsuzaki M, Takeuchi T. Norepinephrine synthesizing enzymes in brain and adrenaline and peripheral sympathetic nerves of hypertensive rats. Jap. J. Pharmacol 1977; 27: 531–535
  • Nagoaka A, Lovenberg W. Regional changes in the activities of aminergic biosynthetic enzymes of hypertensive rats. Eur. J. Pharmacol 1977; 43: 297–306
  • Nakamura K, Nakamura K. Role of brainstem and spinal noradrenergic and adrenergic neurones in the development and maintenance of hypertension in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch. Pharmacol 1978; 305: 127–133
  • Patel K P, Kleine R L, Mercer P F. Noradrenergic mechanisms in the brain and peripheral organs of normotensive and spontaneously hypertensive rats of various ages. Hypertension 1981; 3: 682–690
  • Rapp J P. A paradigm for the identification of primary genetic causes of hypertension in rats. Hypertension 1983; 5(suppl.l)198–203
  • Roth R H, Murrin L C, Walters J R. Central dopaminergic neurons: Effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur. J. Pharmacol 1976; 36: 163–171
  • Saavedra J M. Adrenaline levels in brainstem nuclei and effects of a PNMT inhibition on spontaneously hypertensive rats. Brain Res 1979; 166: 283–292
  • Saavedra J M, Grobecker H, Axelrod J. Changes in central catecholaminergic neurons in the spontaneous (genetic) hypertensive rat. Cir. Res 1978; 42(4)529–534
  • Scatton B. Brain 3, 4-dihydroxyphenylethyleneglycol levels are dependent on central noradrenergic neuron activity. Life Sci. 1982; 32(5): 495
  • Versteeg D HG, Palkovits M, Van Der Gugten J, Wijnen H LJM, Smeets G WM, de Jong W. Catecholamine content of individual brain regions of spontaneously hypertensive rats (SH-rats). Brain Res 1976; 112: 429–434
  • Wijnen H JLM, Versteeg D HG, Palkovits M, de Jong W. Increased adrenaline content of individual nuclei of the hypothalamus and medulla oblongata of genetically hypertensive rats. Brain Res 1977; 135: 180–185
  • Wijnen H JLM, Palkovits M, de Jong W, Versteeg D H.G. Elevated adrenaline content in nuclei of the medulla oblongata and the hypothalamus during the development of spontaneous hypertension. Brain Res 1978; 157: 191–195
  • Wijnen H JLM, Spierenberg H AS, de Kloet E R, de Jong W, Versteeg D HG. Decrease in noradrenergic activity in hypothalamic nuclei during the development of spontaneous hypertension. Brain Res 1980; 184: 153–162
  • Yamori H, de Jong W, Lovenberg W. Further studies on catecholamine synthesis in the spontaneously hypertensive rat: Catecholamine synthesis in the central nervous system. Europ. J. Pharmac 1973; 22: 91–98
  • Yamori H, Ooshima A, Nusaka S, Okamoto K. Genetic factors involved in spontaneously hypertensive rats. An analysis of F2 segregate generation. Jap. Circ. 1972; 36: 561–568
  • Yamori H, Ooshima A, Okamoto K. Deviation of central norepinephrine metabolism in hypertensive rats. Jap. Circ. J. 1973; 37: 1235–1245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.